Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T12:50:34.500Z Has data issue: false hasContentIssue false

Numerical modeling of IR SEDs of dusty CCSN within a Bayesian framework

Published online by Cambridge University Press:  29 August 2024

Szanna Zsíros*
Affiliation:
Dept. of Experimental Physics, Institute of Physics, University of Szeged, H-6720 Szeged, Dóm tér 9, Hungary
Ilse De Looze
Affiliation:
Sterrenkundig Observatorium, Ghent University, Krijgslaan 281-S9, 9000 Gent, Belgium Dept. of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
Tamás Szalai
Affiliation:
Dept. of Experimental Physics, Institute of Physics, University of Szeged, H-6720 Szeged, Dóm tér 9, Hungary Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Miklós út 15-17, Hungary MTA-ELTE Lendület Milky Way Research Group, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the physical properties of dust in the environment of three core-collapse supernovae (CCSNe) through mid-infrared (mid-IR) spectral energy distribution (SED) modeling (both analytical and numerical methods) and interpret our results within a Bayesian framework. We provide evidence that the observed late-time mid-IR excess of the SNe can be described by dust models. We conclude that in case of various types of SNe, numerical dust models with a shell-like geometry can be reconciled with analytical models, regarding the essential properties of dust grains.

Type
Poster Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bevan, A. 2018, MNRAS, 480, 4659 Google Scholar
De Looze, I., Barlow, M. J., Bandiera, R., et al. 2019, MNRAS, 488, 164 Google Scholar
Ercolano, B., Barlow, M. J., Storey, P. J., et al. 2003, MNRAS, 340, 1136 CrossRefGoogle Scholar
Ercolano, B., Barlow, M. J., & Storey, P. J. 2005, MNRAS, 362, 1038 Google Scholar
Ercolano, B., Barlow, M. J., & Sugerman, B. E. K. 2007, MNRAS, 375, 753 CrossRefGoogle Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D., et al. 2013, PASP, 125, 306 CrossRefGoogle Scholar
Goodman, J. & Weare, J. 2010, Communications in Applied Mathematics and Computational Science, 5, 65 CrossRefGoogle Scholar
Hildebrand, R. H. 1983, QJRAS, 24, 267 Google Scholar
Niculescu-Duvaz, M., Barlow, M. J., Bevan, A., et al. 2022, arXiv:2204.14179Google Scholar
Sarangi, A., Matsuura, M., & Micelotta, E. R. 2018, Space Sci. Revs, 214, 63 Google Scholar
Sugerman, B. E. K., Andrews, J. E., Barlow, M. J., et al. 2012, ApJ, 749, 170 CrossRefGoogle Scholar
Szalai, T., Zsros, S., Fox, O. D., et al. 2019, ApJ, 241, 38 Google Scholar
Zsros, S., Nagy, A. P., & Szalai, T. 2022, MNRAS, 509, 3235 Google Scholar
Supplementary material: PDF

Zsíros et al. supplementary material

Zsíros et al. supplementary material

Download Zsíros et al. supplementary material(PDF)
PDF 675.3 KB