No CrossRef data available.
Article contents
Numerical Modeling of Galactic Superwinds with Time-evolving Stellar Feedback
Published online by Cambridge University Press: 16 August 2023
Abstract
Mass-loss and radiation feedback from evolving massive stars produce galactic-scale superwinds, sometimes surrounded by pressure-driven bubbles. Using the time-dependent stellar population typically seen in star-forming regions, we conduct hydrodynamic simulations of a starburst-driven superwind model coupled with radiative efficiency rates to investigate the formation of radiative cooling superwinds and bubbles. Our numerical simulations depict the parameter space where radiative cooling superwinds with or without bubbles occur. Moreover, we employ the physical properties and time-dependent ionization states to predict emission line profiles under the assumption of collisional ionization and non-equilibrium ionization caused by wind thermal feedback in addition to photoionization created by the radiation background. We see the dependence of non-equilibrium ionization structures on the time-evolving ionizing source, leading to a deviation from collisional ionization in radiative cooling wind regions over time.
- Type
- Contributed Paper
- Information
- Proceedings of the International Astronomical Union , Volume 17 , Symposium S370: Winds of Stars and Exoplanets , August 2021 , pp. 217 - 222
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union