Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T16:57:31.078Z Has data issue: false hasContentIssue false

Numerical 2D MHD simulations of the collapse of magnetic rotating protostellar clouds with the Enlil code

Published online by Cambridge University Press:  20 January 2023

Sergey Khaibrakhmanov
Affiliation:
Ural Federal University, 51 Lenina str., Ekaterinburg, 620000, Russia email: mailto:[email protected] [email protected] Chelyabinsk State University, 129 Br. Kashirinykh str., Chelyabinsk, 454001, Russia
Sergey Zamozdra
Affiliation:
Chelyabinsk State University, 129 Br. Kashirinykh str., Chelyabinsk, 454001, Russia
Natalya Kargaltseva
Affiliation:
Ural Federal University, 51 Lenina str., Ekaterinburg, 620000, Russia email: mailto:[email protected] [email protected] Chelyabinsk State University, 129 Br. Kashirinykh str., Chelyabinsk, 454001, Russia
Andrey Zhilkin
Affiliation:
Institute of Astronomy of the Russian Academy of Sciences (INASAN), Moscow, 119017, Russia
Alexander Dudorov
Affiliation:
Chelyabinsk State University, 129 Br. Kashirinykh str., Chelyabinsk, 454001, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We numerically investigate the gravitational collapse of rotating magnetic protostellar clouds. The simulations are performed using 2D MHD code ‘Enlil’. The code is based on TVD scheme of increased order of accuracy. We developed a model of the initially non-uniform cloud, which self-consistently treats gas density and large-scale magnetic field distribution. Simulation results for the typical parameters of a solar mass cloud are presented. In agreement with our previous results for the uniform cloud, the isothermal collapse of the non-uniform cloud results in formation of hierarchical structure of the cloud, consisting of flattened envelope and thin quasi-magnetostatic primary disk near its equatorial plane. The non-uniform cloud collapses longer than the uniform one, since the magnetic field is dynamically stronger at the periphery of the cloud in the former case.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Footnotes

Professor Alexander Dudorov has passed away.

References

Allen, A., Li, Z.-Y., & Shu, F. H. 2003. Astrophys. J., 599, 363.CrossRefGoogle Scholar
Banerjee, R. & Pudritz, R. E. 2006. Astrophys. J., 641, 949.CrossRefGoogle Scholar
Black, D. C., & Scott, E. H. 1982. Astrophys. J., 263, 696.CrossRefGoogle Scholar
Carry, C. L. & Stahler, S. W. 2001. Astrophys. J., 555, 160.CrossRefGoogle Scholar
Caselli, P., Benson, P. J., Myers, P. C., & Tafalla, M. 2002. Astrophys. J., 572, 1, 238.CrossRefGoogle Scholar
Crutcher, R. M. 2012. Annu. Rev. Astron. Astr., 50, 29.CrossRefGoogle Scholar
Dorfi, E. 1982. Astron. Astrophys., 114, 151.Google Scholar
Dudorov, A. E., & Sazonov, Yu. V. 1982. Nauchnye Informatsii, 50, 98.Google Scholar
Dudorov, A. E., Zhilkin, A. G., & Kuznetsov, O. A. 1999. Matem. Modelir., 11, 101.Google Scholar
Dudorov, A. E., Zhilkin, A. G., & Kuznetsov, O. A. 1999. Matem. Modelir., 11, 110.Google Scholar
Dudorov, A. E., Zhilkin, A. G., Lazareva, N. Y., & Kuznetsov, O. A. 2000. Astronomical and Astrophysical Transactions, 19, 515.Google Scholar
Dudorov, A. E., & Zhilkin, A. G. 2008. Astron. Rep., 52, 790.Google Scholar
Gomez, G. C., Vázquez-Semadeni, E., & Palau, A. 2021. Mon. Not. R. Astron. Soc., 502, 4, 4963.CrossRefGoogle Scholar
Goodman, A. A., Benson, P. J., Fuller, G. A., & Myers, P. C. 1993. Astrophys. J., 406, 528.Google Scholar
Gray, W. J., McKee, C. F., & Klein, R. I. 2018. Mon. Not. R. Astron. Soc., 473, 2124.CrossRefGoogle Scholar
Habe, A., Uchida, Y., Ikeuchi, S., & Pudritz, R. E. 1991. Publ. Astron. Soc. Japan, 43, 703.Google Scholar
Hennebelle, P. & Ciardi, A. 2009. Astron. Astrophys., 506, L29.CrossRefGoogle Scholar
Kargaltseva, N. S., Khaibrakhmanov, S. A., Dudorov, A. E., & Zhilkin, A. G. 2021, Bulletin of the Lebedev Physics Institute, 48, 268.CrossRefGoogle Scholar
Khaibrakhmanov, S. A., Dudorov, A. E., Kargaltseva, N. S., & Zhilkin, A. G. 2021, Astron. Rep., 65, 693.Google Scholar
Leao, M. R. M., de Gouveia Dal Pino, E. M., Santos-Lima, R., & Lazarian, A. 2013. Astrophys. J., 777, 46.CrossRefGoogle Scholar
Li, H.-b., Dowell, C. D., Goodman, A., Hildebrand, R., & Novak, G. 2009, Astrophys. J., 704, 891.Google Scholar
Mouschovias, T. C. 1976. Astrophys. J., 206, 753.Google Scholar
Mouschovias, T. C. & Morton, S. A. 1991. Astrophys. J., 371, 296.CrossRefGoogle Scholar
Myers, A. T., McKee, C. F., Cunningham, A. J., Klein, R. I., & Krumholz, M. R. 2013. Astrophys. J., 766, 97.CrossRefGoogle Scholar
Nakano, T. 1979. Publ. Astron. Soc. Japan, 31, 697.Google Scholar
Seifried, D., Pudritz, R. E., Banerjee, R., Duffin, D., & Klessen, R. S. 2012. Mon. Not. R. Astron. Soc., 422, 347.Google Scholar
Stodólkiewicz, J. S. 1963. Acta Astron., 13, 30.Google Scholar
Tobin, J. J., Sheehan, P. D., Megeath, S. T., et al. 2020. Astrophys. J., 890, 2, 130.CrossRefGoogle Scholar
Tomisaka, K., Ikeuchi, S., & Nakamura, T. 1988. Astrophys. J., 335, 239.Google Scholar
Tsukamoto, Y., Machida, M. N., Susa, H., Nomura, H., & Inutsuka, S. 2020. Astrophys. J., 896, 158.CrossRefGoogle Scholar
Whitworth, A. P. & Ward-Thompson, D. 2001. Astrophys. J., 547, 317.Google Scholar
Zhao, B., Tomida, K., Hennebelle, P., et al. 2020. Solar System Research, 216, 43.Google Scholar
Zhilkin, A. G., Pavlyuchenkov, Y. N., & Zamozdra, S. N. 2009. Astron. Rep., 53, 590. CrossRefGoogle Scholar