Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T18:51:48.998Z Has data issue: false hasContentIssue false

A Novel Approach to the Detection and Characterization of PAH Cations and PAH-Photoproducts

Published online by Cambridge University Press:  21 February 2014

D. L. Kokkin
Affiliation:
IRAP, Université de Toulouse (UPS-OMP) and CNRS; 9 Av. du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France email: [email protected]
A. Simon
Affiliation:
LCPQ, Université de Toulouse (UPS-IRSAMC) and CNRS; 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
C. Marshall
Affiliation:
IRAP, Université de Toulouse (UPS-OMP) and CNRS; 9 Av. du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France email: [email protected]
A. Bonnamy
Affiliation:
IRAP, Université de Toulouse (UPS-OMP) and CNRS; 9 Av. du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France email: [email protected]
C. Joblin
Affiliation:
IRAP, Université de Toulouse (UPS-OMP) and CNRS; 9 Av. du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cationic polycyclic aromatic hydrocarbons (PAHs) are attractive candidates for the Diffuse Interstellar Bands, but to date not a single PAH species has been identified on the basis of a spectral agreement. This indicates either that the molecular diversity is very large or that the candidates that have been considered are not the correct ones. In particular, small/medium-sized PAH cations are submitted to photodissociation under UV photons from stars. Therefore it is of interest to characterize the spectroscopic properties of key breakdown products. Furthermore, these studies should be performed under conditions that mimic those found in interstellar space, which leads to additional experimental difficulties. We describe the approach we are developing with the PIRENEA set-up and present results on the 1-Methylpyrene cation and photo-derived species. Experimental measurements are guided by calculations based on density functional theory.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bréchignac, P., Pino, T., & Boudin, N. 2001, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 57 4, 745756Google Scholar
Bullins, K. W., Huang, T. T. S., & Kirkby, S. J. 2009, Int. J. QChem. 109 1322–1327Google Scholar
Choe, J. C. 2006, J. Phys. Chem. A 110 76557662Google Scholar
Cox, N. L. J. & Spaans, M. 2006, A&A 451 3, 973980Google Scholar
Cox, N. L. J., Cordiner, M. A., Ehrenfreund, P., Kaper, L., Sarre, P. J., Foing, B. H., Spaans, M., Cami, J., Sofia, U. J., Clayton, G., Gordon, K. D., & Salama, F. 2007, A&A 470 941–955Google Scholar
Crawford, M. K., Tielens, A. G. G. M., & Allamandola, L. J. 1985, ApJ 293 1, L45L48Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., et al. 2009, Gaussian09 Revision A.1, Gaussian Inc. Wallingford CTGoogle Scholar
Galazutdinov, G. A., Lo Curto, G., & Krełowski, J. 2008, MNRAS 386 20032008Google Scholar
Halasinski, T. M., Salama, F., & Allamandola, L. J. 2005, ApJ 628 555–566Google Scholar
Hammonds, M., Pathak, A., & Sarre, P. J. 1997, Phys. Chem. Chem. Phys. 22 11, 44584464Google Scholar
Hariharan, P. C. & Pople, J. A. 1973, Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 28 3, 213222Google Scholar
Hehre, W. J., Ditchfield, R., & Pople, J. A. 1972, J. Chem. Phys. 56 5, 22572261CrossRefGoogle Scholar
Joblin, C. & Tielens, A. G. G. M. (eds.) 2011, PAHs and the Universe: A Symposium to Celebrate the 25th Anniversary of the PAH Hypothesis, EAS Pub. Series, Vol. 46Google Scholar
Léger, A. & Puget, J. L. 1984, A&A 137 1, L5L8Google Scholar
Léger, A. & d'Hendecourt, L. 1985, A&A 146 1, 8185Google Scholar
Léger, A, d'Hendecourt, L., & Défourneau, 1995, A&A 293 2, L53L56Google Scholar
Maier, J. P., Chakrabarty, S., Mazzotti, F. J., Rice, C. A., Dietsche, R., Walker, G. A. H., & Bohlender, D. A. 2011, ApJ Letters, 729, L20Google Scholar
Marshall, A. G., Hendrickson, C. L., & Jackson, G. S. 1998, Mass Spec. Rev. 17 1–353.0.CO;2-K>CrossRefGoogle Scholar
Müller, A. M., Uiterwaal, C. J. G. J., Witzel, B., Wanner, J., & Kompa, K.-L. 1995, J. Chem. Phys. 112 21, 92899300Google Scholar
Oomens, J., Sartakov, B. G., Meijer, G., & von Helden, G. 2006, J. Mass Spec. 254 119CrossRefGoogle Scholar
Salama, F., Bakes, E. L. O., Allamandola, L. J., & Tielens, A. G. G. M. 1996, ApJ 458 2, 621636Google Scholar
Sarre, P. J. 2006, J. Mol. Spec 238 110Google Scholar
Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. 1994, J. Phys. Chem., 98, 45, 1162311627Google Scholar
Szczepanski, J., Banisaukas, J., Vala, M., Hirata, S., & Wiley, W. R. 2002, J. Phys. Chem. A 106 30, 69356940Google Scholar
Useli-Bacchitta, F., Bonnamy, A., Mulas, G., Malloci, G., Toublanc, D., & Joblin, C. 2010, Chem. Phys. 371 1–3, 1623CrossRefGoogle Scholar
van der Zwet, G. P. & Allamandola, L. J. 1985, A&A 146 1, 7680Google Scholar
Vuong, M. H. & Foing, B. H. 2000, A&A 363 L5–L8Google Scholar