Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T18:20:45.950Z Has data issue: false hasContentIssue false

No evidence for evolution in the Far-Infrared-Radio correlation out to z ~ 2 in the ECDFS

Published online by Cambridge University Press:  17 August 2012

Minnie Y. Mao
Affiliation:
School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, 7001, Australia Infrared Processing and Analysis Center, California Institute of Technology, Pasadena CA 91125, USA CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW, 1710, Australia Australian Astronomical Observatory, PO Box 296, Epping, NSW, 1710, Australia
Minh T. Huynh
Affiliation:
Infrared Processing and Analysis Center, California Institute of Technology, Pasadena CA 91125, USA International Centre for Radio Astronomy Research, M468, University of Western Australia, Crawley, WA 6009, Australia
Ray P. Norris
Affiliation:
CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW, 1710, Australia
Mark Dickinson
Affiliation:
National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719, USA
Dave Frayer
Affiliation:
National Radio Astronomy Observatory, PO Box 2, Green Bank, WV 24944, USA
George Helou
Affiliation:
Infrared Processing and Analysis Center, California Institute of Technology, Pasadena CA 91125, USA
Jacqueline A. Monkiewicz
Affiliation:
School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Far-Infrared Radio Correlation (FRC) is the tightest and most universal correlation known among global parameters of galaxies. Here we present the results of our investigation of the 70 μm FRC of starforming galaxies in the Extended Chandra Deep Field South (ECDFS) out to z > 2. In order to quantify the evolution of the FRC we used both survival analysis and stacking techniques, which gave similar results. We also calculated the FRC using total infrared luminosity and rest-frame radio luminosity, qTIR, and find that qTIR is constant (within 0.22) over the redshift range 0 - 2. We see no evidence for evolution in the FRC at 70 μm, which is surprising given the many factors that are expected to change this ratio at high redshifts.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Appleton, P. N., et al. 2004, ApJS, 154, 147Google Scholar
Bell, E. F. 2003, ApJ, 586, 794CrossRefGoogle Scholar
Bourne, N., Dunne, L., Ivison, R. J., Maddox, S. J., Dickinson, M., & Frayer, D. T. 2010, MNRAS, 1524Google Scholar
Garrett, M. A. 2002, A&A, 384, L19.Google Scholar
Helou, G., Soifer, B. T., & Rowan-Robinson, M. 1985, ApJ, 298, L7.Google Scholar
Huynh, M. T., Gawiser, E., Marchesini, D., Brammer, G., & Guaita, L. 2010, ApJ, 723, 1110Google Scholar
Ivison, R. J., et al. 2010, MNRAS, 402, 245Google Scholar
Ivison, R. J., et al. 2010, A&A, 518, L31.Google Scholar
Mao, M. Y., Huynh, M. T., Norris, R. P., Dickinson, M., Frayer, D., Helou, G., & Monkiewicz, J. A. 2011, ApJ, 731, 79CrossRefGoogle Scholar
Miller, N. A., Fomalont, E. B., Kellermann, K. I., Mainieri, V., Norman, C., Padovani, P., Rosati, P., & Tozzi, P. 2008, ApJS, 179, 114Google Scholar
Sargent, M. T., et al. 2010, ApJS, 186, 341CrossRefGoogle Scholar
Sargent, M. T., et al. 2010, ApJ, 714, L190.CrossRefGoogle Scholar
Seymour, N., Huynh, M., Dwelly, T., Symeonidis, M., Hopkins, A., McHardy, I. M., Page, M. J., & Rieke, G. 2009, MNRAS, 398, 1573Google Scholar
van der Kruit, P. C. 1973, A&A, 29, 263Google Scholar