Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T02:52:36.101Z Has data issue: false hasContentIssue false

New Candidates for Chromospherically Young, Kinematically Old Stars

Published online by Cambridge University Press:  24 September 2020

Eduardo Machado Pereira
Affiliation:
Observatório do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antônio, 43, - Centro, 20080-090, Rio de Janeiro - RJ, Brazil email: [email protected]
Helio J. Rocha Pinto
Affiliation:
Observatório do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antônio, 43, - Centro, 20080-090, Rio de Janeiro - RJ, Brazil email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Roughly speaking, young stars are associated to intense chromospheric activity (CA), whereas it decreases with stellar aging. However, some objects that show high kinematical components – in turn, associated to older stars – reveal CA similar to that of young ones; we call these stars chromospherically young and kinematically old (CYKOs). One hypothesis that could explain their occurrence is the merge of a short-period binary, from which the outcome would be a chromospherically active, kinematically evolved star. Considering that they evolved separately, we expect them to be lithium depleted, and therefore we look for CYKO stars by analyzing their lithium content (λ 6707 Å). We present a preliminary list of 48 stars matching this criteria, aiming to either confirm or discard the coalescence of a short-period pair hypothesis.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Almeida-Fernandes, F. & Rocha-Pinto, H. J. 2018, MNRAS, 476, 184 CrossRefGoogle Scholar
Boro Saikia, S., Marvin, C. J., Jeffers, S. V., Reiners, A., Cameron, R., Marsden, S. C., Petit, P., Warnecke, J., Yadav, A. P., et al. 1993, A&A, 616, A108 Google Scholar
Hall, J. C. 2008, Solar Phys. (Review), 5, article id. 2Google Scholar
Holmberg, J., Nordström, B., Andersen, J., et al. 2009, A&A, 501, 941 Google Scholar
Lorenzo-Oliveira, D., Freitas, F. C., Meléndez, J., Bedell, M., Ramrez, I., Bean, J. L., Asplund, M., Spina, L., Dreizler, S., Alves-Brito, A., Casagrande, L., et al. 2018, A&A, 619, A73 Google Scholar
Murgas, F., Jenkins, J. S., Rojo, P., Jones, H. R. A., Pinfield, D. J., et al. 2013, A&A, 552, A27 Google Scholar
Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., Vaughan, A. H., et al. 1984, ApJ, 279, 763 CrossRefGoogle Scholar
Rocha-Pinto, H. J., Castilho, B. V., Maciel, W. J., et al. 2002, A&A, 384, 912 Google Scholar
Rocha-Pinto, H. J., Flynn, C., Scalo, J., Hänninen, J., Maciel, W. J., Hensler, G., et al. 2004, A&A, 423, 517 Google Scholar
Schröder, C., Reiners, A., Schmitt, J. H. M. M., et al. 2009, A&A, 493, 1099 Google Scholar
Skumanich, A. 1972, ApJ, 171, 565 CrossRefGoogle Scholar
Soderblom, D. R. 1990, AJ, 100, 204 CrossRefGoogle Scholar
Soderblom, D. R., Duncan, D. K., Johnson, D. R. H., et al. 1991, ApJ, 375, 722 CrossRefGoogle Scholar
Soderblom, D. R. 2010, ARAA, 48, 581 CrossRefGoogle Scholar
Vaughan, A. H., Preston, G. W., Wilson, O. C., et al. 1978, PASP, 90, 267 CrossRefGoogle Scholar
Wielen, R. 1977, A&A, 60(n. 2), 263 Google Scholar