Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:28:25.535Z Has data issue: false hasContentIssue false

Neutron Star Equation of State Constraints from NICER and Multimessenger Gravitational Wave Observations

Published online by Cambridge University Press:  27 February 2023

Geert Raaijmakers*
Affiliation:
GRAPPA, University of Amsterdam, Amsterdam, the Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dense matter equation of state (EoS), describing the state of matter under the extreme conditions found in neutron stars, is not accurately known. However, significant process has been made in recent years through the emergence of new observational avenues of neutron stars. Firstly, the X-ray timing telescope NICER has delivered two joint mass-radius measurements, for pulsars PSR J0030+0451 and PSR J0740+6620, using pulse profile modeling. Secondly, gravitational wave detections of binary neutron star (BNS) mergers allow for a measurement of the EoS-dependent tidal deformability, as demonstrated in the first detected BNS merger GW170817. Additionally, electromagnetic radiation from the subsequent ultraviolet-optical-infrared transient (the kilonova) originating from the ejected material in GW170817 further probes the binary system and the EoS. We demonstrate how the joint analysis of these multi-messenger observations of neutron stars significantly constrains the dense matter EoS. We then describe, in more detail, a framework to jointly analyse a gravitational wave signal and the accompanying kilonova light curves, focusing on possible future black hole–neutron star (BHNS) mergers. We highlight the potential for multimessenger BHNS to constrain the tidal deformability of the neutron star, thereby increasing our understanding of the dense matter EoS.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, Phys. Rev. Lett., 119, 161101 CrossRefGoogle ScholarPubMed
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, Nature, 551, 85 CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2018, Phys. Rev. Lett., 121, 161101 CrossRefGoogle ScholarPubMed
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019, Physical Review X, 9, 031040 CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2020, ApJ (Letters), 892, L3 CrossRefGoogle Scholar
Abbott, R., Abbott, T. D., Abraham, S., et al. 2021, ApJ (Letters), 915, L5 Google Scholar
Anand, S., Coughlin, M. W., Kasliwal, M. M., et al. 2021, Nature Astronomy, 5, 46 Google Scholar
Baym, G., Hatsuda, T., Kojo, T., et al. 2018, Reports on Progress in Physics, 81, 056902.Google Scholar
Bloemen, S., Groot, P., Woudt, P., et al. 2016, Proceedings of the SPIE, 9906, 990664 Google Scholar
Capano, C. D., Tews, I., Brown, S. M., et al. 2020, Nature Astronomy, 4, 625 CrossRefGoogle Scholar
Cromartie, H. T., Fonseca, E., Ransom, S. M., et al. 2020, Nature Astronomy, 4, 72 CrossRefGoogle Scholar
De, S. & Siegel, D. M. 2021, ApJ, 921, 94 CrossRefGoogle Scholar
Dekany, R., Smith, R. M., Riddle, R., et al. 2020, Publications of the Astronomical Society of the Pacific, 132, 038001 CrossRefGoogle Scholar
Essick, R., Landry, P., & Holz, D. E. 2020, Phys. Rev. D, 101, 063007 CrossRefGoogle Scholar
Fernández, R., Tchekhovskoy, A., Quataert, E., et al. 2019, MNRAS, 482, 3373 Google Scholar
Fernández, R., Foucart, F., & Lippuner, J. 2020, MNRAS, 497, 3221 CrossRefGoogle Scholar
Fonseca, E., Cromartie, H. T., Pennucci, T. T., et al. 2021, ApJ (Letters), 915, L12 CrossRefGoogle Scholar
Foucart, F., Desai, D., Brege, W., et al. 2017, Classical and Quantum Gravity, 34, 044002 CrossRefGoogle Scholar
Gompertz, B. P., Cutter, R., Steeghs, D., et al. 2020, MNRAS, 497, 726 CrossRefGoogle Scholar
Gralla, S. E., Lupsasca, A., & Philippov, A. 2017, ApJ, 851, 137 CrossRefGoogle Scholar
Greif, S. K., Raaijmakers, G., Hebeler, K., et al. 2019, MNRAS, 485, 5363 Google Scholar
Hebeler, K., Lattimer, J. M., Pethick, C. J., et al. 2013, ApJ, 773, 11 CrossRefGoogle Scholar
Hinderer, T., Lackey, B. D., Lang, R. N., et al. 2010, Phys. Rev. D, 81, 123016 CrossRefGoogle Scholar
Hotokezaka, K. & Nakar, E. 2020, ApJ, 891, 152 CrossRefGoogle Scholar
Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 CrossRefGoogle Scholar
Kawaguchi, K., Shibata, M., & Tanaka, M. 2020, ApJ, 889, 171 CrossRefGoogle Scholar
Krüger, C. J. & Foucart, F. 2020, Phys. Rev. D, 101, 103002 CrossRefGoogle Scholar
Landry, P. & Essick, R. 2019, Phys. Rev. D, 99, 084049 CrossRefGoogle Scholar
Legred, I., Chatziioannou, K., Essick, R., et al. 2021, Phys. Rev. D, 104, 063003 CrossRefGoogle Scholar
Li, L.-X. & Paczyński, B. 1998, ApJ (Letters), 507, L59CrossRefGoogle Scholar
Lindblom, L. 2010, Phys. Rev. D, 82, 103011 CrossRefGoogle Scholar
Metzger, B. D. 2019, Living Reviews in Relativity, 23, 1 CrossRefGoogle Scholar
Miller, M. C., Lamb, F. K., Dittmann, A. J., et al. 2019, ApJ (Letters), 887, L24 CrossRefGoogle Scholar
Miller, M. C., Lamb, F. K., Dittmann, A. J., et al. 2021, ApJ (Letters), 918, L28 CrossRefGoogle Scholar
Pang, P. T. H., Tews, I., Coughlin, M. W., et al. 2021, ApJ, 922, 1 CrossRefGoogle Scholar
Raaijmakers, G., Riley, T. E., Watts, A. L., et al. 2019, ApJ (Letters), 887, L22 CrossRefGoogle Scholar
Raaijmakers, G., Greif, S. K., Riley, T. E., et al. 2020, ApJ (Letters), 893, L21 CrossRefGoogle Scholar
Raaijmakers, G., Greif, S. K., Hebeler, K., et al. 2021, ApJ (Letters), 918, L29 CrossRefGoogle Scholar
Raaijmakers, G., Nissanke, S., Foucart, F., et al. 2021, ApJ, 922, 269 CrossRefGoogle Scholar
Read, J. S., Lackey, B. D., Owen, B. J., et al. 2009, Phys. Rev. D, 79, 124032 CrossRefGoogle Scholar
Riley, T. E., Watts, A. L., Bogdanov, S., et al. 2019, ApJ (Letters), 887, L21 CrossRefGoogle Scholar
Riley, T. E., Watts, A. L., Ray, P. S., et al. 2021, ApJ (Letters), 918, L27 CrossRefGoogle Scholar
Siegel, D. M. & Metzger, B. D. 2017, Phys. Rev. Lett., 119, 231102 CrossRefGoogle Scholar
Watts, A. L., Andersson, N., Chakrabarty, D., et al. 2016, Reviews of Modern Physics, 88, 021001 CrossRefGoogle Scholar
Zhu, J.-P., Wu, S., Yang, Y.-P., et al. 2021, ApJ, 921, 156 CrossRefGoogle Scholar