Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T14:25:50.155Z Has data issue: false hasContentIssue false

Neutral hydrogen in the post-reionization universe

Published online by Cambridge University Press:  08 May 2018

Hamsa Padmanabhan*
Affiliation:
ETH Zurich, Wolfgang-Pauli-Strasse 27, CH 8093 Zurich, Switzerland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The evolution of neutral hydrogen (HI) across redshifts is a powerful probe of cosmology, large scale structure in the universe and the intergalactic medium. Using a data-driven halo model to describe the distribution of HI in the post-reionization universe (z ∼ 5 to 0), we obtain the best-fitting parameters from a rich sample of observational data: low redshift 21-cm emission line studies, intermediate redshift intensity mapping experiments, and higher redshift Damped Lyman Alpha (DLA) observations. Our model describes the abundance and clustering of neutral hydrogen across redshifts 0 - 5, and is useful for investigating different aspects of galaxy evolution and for comparison with hydrodynamical simulations. The framework can be applied for forecasting future observations with neutral hydrogen, and extended to the case of intensity mapping with molecular and other line transitions at intermediate redshifts.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Anderson, C. J., Luciw, N. J., Li, Y.-C., et al. 2017, arXiv:1710.00424Google Scholar
Bacon, D., Bridle, S., Abdalla, F. B., et al. 2015, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 145Google Scholar
Bagla, J. S., Khandai, N., & Datta, K. K.. MNRAS, 407: 567580, September 2010.Google Scholar
Barnes, L. A. & Haehnelt, M. G.. MNRAS, 440: 23132321, April 2014.Google Scholar
Bharadwaj, S., Sethi, S. K., & Saini, T. D., 2009, Phys.Rev.D, 79, 083538Google Scholar
Bigiel, F. & Blitz, L., 2012, ApJ, 756, 183Google Scholar
Bird, S., Vogelsberger, M., Haehnelt, M., et al. 2014, MNRAS, 445, 2313Google Scholar
Catinella, B., Schiminovich, D., Cortese, L., et al. 2013, MNRAS, 436, 34Google Scholar
Chang, T.-C., Pen, U.-L., Bandura, K., & Peterson, J. B.. Nature, 466: 463465, July 2010.CrossRefGoogle Scholar
Crain, R. A., Bahé, Y. M., Lagos, C. d. P., et al. 2017, MNRAS, 464, 4204Google Scholar
Crighton, N. H. M., Murphy, M. T., Prochaska, J. X., et al. 2015, MNRAS, 452, 217Google Scholar
Davé, R., Katz, N., Oppenheimer, B. D., Kollmeier, J. A., & Weinberg, D. H., 2013, MNRAS, 434, 2645Google Scholar
Font-Ribera, A., Miralda-Escudé, J., Arnau, E., et al. 2012, JCAP, 11, 059CrossRefGoogle Scholar
Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2782Google Scholar
Maller, A. H. & Bullock, J. S.. MNRAS, 355: 694712, December 2004.Google Scholar
Marín, F. A., Gnedin, N. Y., Seo, H.-J., & Vallinotto, A.. ApJ, 718: 972980, August 2010.Google Scholar
Martin, A. M., Papastergis, E., Giovanelli, R., et al. 2010, ApJ, 723, 1359CrossRefGoogle Scholar
Martin, A. M., Giovanelli, R., Haynes, M. P., & Guzzo, L.. ApJ, 750: 38, May 2012.Google Scholar
Moster, B. P., Naab, T., & White, S. D. M., 2013, MNRAS, 428, 3121Google Scholar
Noterdaeme, P., Petitjean, P., Carithers, W. C., et al. 2012, A&A, 547, L1Google Scholar
Padmanabhan, H., Choudhury, T. R., & Refregier, A., 2015, MNRAS, 447, 3745Google Scholar
Padmanabhan, H., Choudhury, T. R., & Refregier, A., 2016, MNRAS, 458, 781Google Scholar
Padmanabhan, H. & Kulkarni, G., 2017, MNRAS, 470, 340Google Scholar
Padmanabhan, H., Refregier, A., & Amara, A., 2017, MNRAS, 469, 2323Google Scholar
Padmanabhan, H. & Refregier, A., 2017, MNRAS, 464, 4008Google Scholar
Padmanabhan, H. 2018, MNRAS, 475, (2) 1477Google Scholar
Pérez-Ràfols, I., Font-Ribera, A., Miralda-Escudé, J., et al. 2018, MNRAS, 473, 3019CrossRefGoogle Scholar
Rahmati, A. & Schaye, J.. MNRAS, 438: 529547, February 2014.CrossRefGoogle Scholar
Rahmati, A., Pawlik, A. H., Raicevic, M., & Schaye, J.. MNRAS, 430: 24272445, April 2013.Google Scholar
Rudie, G. C., Steidel, C. C., Trainor, R. F., et al. 2012, ApJ, 750, 67Google Scholar
Saintonge, A., Kauffmann, G., Kramer, C., et al. 2011, MNRAS, 415, 32Google Scholar
Sheth, R. K. & Tormen, G.. MNRAS, 329: 6175, January 2002.Google Scholar
Switzer, E. R., Masui, K. W., Bandura, K., et al. 2013, MNRAS, 434, L46Google Scholar
Villaescusa-Navarro, F., Viel, M., Datta, K. K., & Choudhury, T. R., 2014, JCAP, 9, 050Google Scholar
Wang, J., Fu, J., Aumer, M., et al. 2014, MNRAS, 441, 2159Google Scholar
Wyithe, J. S. B. & Loeb, A., 2008, MNRAS, 383, 606Google Scholar
Zwaan, M. A., Meyer, M. J., Staveley-Smith, L., & Webster, R. L.. MNRAS, 359: L30L34, May 2005.Google Scholar