Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T01:10:45.624Z Has data issue: false hasContentIssue false

Neutral gas and the escape of ionizing radiation: Lessons from the low-redshift Green Peas

Published online by Cambridge University Press:  04 June 2020

Anne Jaskot
Affiliation:
Astronomy Department, Williams College, Williamstown, MA01267, USA email: [email protected] Department of Astronomy, University of Massachusetts, Amherst, MA01003, USA
Jed McKinney
Affiliation:
Department of Astronomy, University of Massachusetts, Amherst, MA01003, USA
Tara Dowd
Affiliation:
The Chandra X-ray Center, Cambridge, MA02138, USA
Sally Oey
Affiliation:
Department of Astronomy, University of Michigan, Ann Arbor, MI48109, USA
Min Yun
Affiliation:
Department of Astronomy, University of Massachusetts, Amherst, MA01003, USA
Claudia Scarlata
Affiliation:
Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN55455, USA
James Lowenthal
Affiliation:
Department of Astronomy, Smith College, Northampton, MA01063, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

How galaxies reionized the universe remains an open question, but we can gain insights from the low-redshift Green Pea galaxies, one of the only known populations of Lyman continuum (LyC) emitters. Using VLA H i 21 cm observations and HST UV spectra of Green Peas, we investigate how neutral gas content and geometry influence LyC and Lyα escape. Our results suggest that LyC Emitters may have high ratios of star formation rate to H i mass. Low gas covering fractions are common among the population, but not all sightlines are optically thin. Based on the observed relationship between high ionization parameters, low metallicities, and narrow Lyα profiles, we propose that weak stellar feedback at low metallicities results in a gas geometry of dense clumps within a low-density medium, which facilitates Lyα and LyC escape. We address the implications of these results for identifying LyC emitters at high redshift with JWST and ALMA.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Amorn, R. O., Pérez-Montero, E., & Vlchez, J. M. 2010, ApJ (Letters), 715, L128Google Scholar
Cardamone, C., Schawinski, K., Sarzi, M., et al. 2009, MNRAS, 399, 1191CrossRefGoogle Scholar
Carniani, S., Maiolino, R., Pallottini, A., et al. 2017, A&A, 605, A42Google Scholar
Finkelstein, S. L., D’Aloisio, A., Paardekooper, J.-P., et al. 2019, ApJ, 879, 36CrossRefGoogle Scholar
Fletcher, T. J., Tang, M., Robertson, B. E., et al. 2019, ApJ, 878, 87CrossRefGoogle Scholar
Hagen, A., Zeimann, G. R., Behrens, C., et al. 2016, ApJ, 817, 7910.3847/0004-637X/817/1/79CrossRefGoogle Scholar
Hashimoto, T., Inoue, A. K., Mawatari, K., et al. 2019, PASJ, 70Google Scholar
Huang, S., Haynes, M. P., Giovanelli, R., et al. 2012, AJ, 143, 133CrossRefGoogle Scholar
Huang, S., Haynes, M. P., Giovanelli, R., et al. 2012, ApJ, 756, 113CrossRefGoogle Scholar
Inoue, A. K., Tamura, Y., Matsuo, H., et al. 2016, Science, 352, 1559CrossRefGoogle Scholar
Izotov, Y. I, Guseva, N. G., & Thuan, T. X. 2011, ApJ, 728, 161CrossRefGoogle Scholar
Izotov, Y. I, Schaerer, D., Thuan, T. X, et al. 2016, MNRAS, 461, 3683CrossRefGoogle Scholar
Izotov, Y. I, Guseva, N. G., Fricke, K. J., et al. 2017, MNRAS, 467, 4118CrossRefGoogle Scholar
Izotov, Y. I, Thuan, T. X., & Guseva, N. G. 2017, MNRAS, 471, 548CrossRefGoogle Scholar
Izotov, Y. I, Worseck, G., Schaerer, D., et al. 2018, MNRAS, 478, 4851CrossRefGoogle Scholar
Jaskot, A. E. & Oey, M. S. 2013, ApJ, 766, 91CrossRefGoogle Scholar
Jaskot, A. E., Oey, M. S., Scarlata, C., et al. 2017, ApJ (Letters), 851, L9Google Scholar
Jaskot, A. E., Dowd, T., Oey, M. S., et al. 2019, ApJ, SubmittedGoogle Scholar
Madau, P. & Haardt, F. 2015, ApJ (Letters), 813, L8Google Scholar
McKinney, J. H., Jaskot, A. E., Oey, M. S., et al. 2019, ApJ, 874, 52CrossRefGoogle Scholar
Naidu, R. P., Forrest, B., Oesch, P. A., et al. 2018, MNRAS, 478, 79110.1093/mnras/sty961CrossRefGoogle Scholar
Naidu, R. P., Tacchella, S., Mason, C. A., et al. 2019, arXiv:1907.13130Google Scholar
Nakajima, K. & Ouchi, M. 2014, MNRAS, 442, 900CrossRefGoogle Scholar
Pardy, S. A., Cannon, J. M., Östlin, G., et al. 2016, AJ, 152, 178CrossRefGoogle Scholar
Puschnig, J., Hayes, M., Östlin, G., et al. 2017, MNRAS, 469, 3252CrossRefGoogle Scholar
Ramachandran, V., Hamann, W.-R., Oskinova, L. M., et al. 2019, A&A, 625, A104Google Scholar
Robertson, B. E., Ellis, R. S., Furlanetto, S. R., et al. 2015, ApJ (Letters), 802, L19Google Scholar
Rutkowski, M. J., Scarlata, C., Henry, A., et al. 2017, ApJ (Letters), 841, L27Google Scholar
Schaerer, D., Izotov, Y. I, Verhamme, A., et al. 2016, A&A (Letters), 591, L8Google Scholar
Smit, R., Bouwens, R. J., Labbé, I., et al. 2014, ApJ, 784, 58CrossRefGoogle Scholar
Thuan, T. X, Goehring, K. M., Hibbard, J. E., et al. 2016, MNRAS, 463, 4268CrossRefGoogle Scholar
Vanzella, E., de Barros, S., Vasei, K., et al. 2016, ApJ, 825, 4110.3847/0004-637X/825/1/41CrossRefGoogle Scholar
Verhamme, A., Orlitová, I., Schaerer, D., et al. 2015, A&A, 578, A7Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574Google Scholar