Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T10:53:49.577Z Has data issue: false hasContentIssue false

The Needlet CMB Trispectrum

Published online by Cambridge University Press:  01 July 2015

Antonino Troja*
Affiliation:
Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133, Milano (MI), Italy
Simona Donzelli
Affiliation:
INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica, Milano, Via E. Bassini 15, 20133, Milano (MI), Italy
Davide Maino
Affiliation:
Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133, Milano (MI), Italy
Domenico Marinucci
Affiliation:
Dipartimento di Matematica, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Roma (RM), Italy
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We propose a computationally feasible estimator for the needlet trispectrum, which develops earlier work on the bispectrum by Donzelli et al. (2012). Our proposal seems to enjoy a number of useful properties, in particular a) the construction exploits the localization properties of the needlet system, and hence it automatically handles masked regions; b) the procedure incorporates a quadratic correction term to correct for the presence of instrumental noise and sky-cuts; c) it is possible to provide analytic results on its statistical properties, which can serve as a guidance for simulations. The needlet trispectrum we present here provides the natural building blocks for the efficient estimation of nonlinearity parameters on CMB data, and in particular for the third order constants gNL and τNL.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Baldi, P., Kerkyacharian, G., Marinucci, D., & Picard, D. 2009, Annals of Statistics, 37, 1150Google Scholar
Bardeen, J. M. 1980, Phys. Rev. D, 22, 1882Google Scholar
Donzelli, S., Hansen, F. K., Liguori, M., Marinucci, D., & Matarrese, S.ApjGoogle Scholar
Komatsu, E., Spergel, D. N., & Wandelt, B. D. 2005, ApJ, 634, 14CrossRefGoogle Scholar
Marinucci, D. & Peccati, G. 2011, Random Fields on the Sphere, Cambridge University PressCrossRefGoogle Scholar
Marinucci, D., Pietrobon, D., Balbi, A., Baldi, P., Cabella, P., Kerkyacharian, G., Natoli, P., Picard, D., & Vittorio, N. 2008, MNRAS, 383, 539Google Scholar
Narcowich, F. J., Petrushev, P., & Ward, J. D. 2006, SIAM J. Math. Anal., 38, 574Google Scholar
Planck Collaboration 2013, ArXiv e-prints arxiv:1303.5084Google Scholar
Regan, D., Gosenca, M., Seery, D. 2013, ArXiv e-prints arxiv:1310.8617Google Scholar
Sekiguchi, T., Sugiyama, N. 2013, JCAP, 09, 2Google Scholar
Troja, A.et al. 2014, Manuscript in preparationGoogle Scholar
Wick, G. C. 1950, Physical Review, 80, 268CrossRefGoogle Scholar