Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T00:00:24.435Z Has data issue: false hasContentIssue false

N-body chaos, phase-space transport and relaxation in numerical simulations

Published online by Cambridge University Press:  11 March 2020

Pierfrancesco Di Cintio
Affiliation:
IFAC-CNR, Via Madonna del piano 10, I-50019, Sesto Fiorentino (FI), Italy email: [email protected] INFN, Sezione di Firenze, via G. Sansone 1, I-50019, Sesto Fiorentino (FI), Italy
Lapo Casetti
Affiliation:
INFN, Sezione di Firenze, via G. Sansone 1, I-50019, Sesto Fiorentino (FI), Italy Dipartimento di Fisica e Astronomia, Università di Firenze,via G. Sansone 1, I-50019, Sesto Fiorentino (FI), Italy INAF-Osservatorio astrofisico di Arcetri, largo E. Fermi 5, I-50125, Firenze, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using direct N-body simulations of self-gravitating systems we study the dependence of dynamical chaos on the system size N. We find that the N-body chaos quantified in terms of the largest Lyapunov exponent Λmax decreases with N. The values of its inverse (the so-called Lyapunov time tλ) are found to be smaller than the two-body collisional relaxation time but larger than the typical violent relaxation time, thus suggesting the existence of another collective time scale connected to many-body chaos.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Benettin, G., Galgani, L., & Strelcyn, J.-M. 1976, Phys. Rev. A, 14, 2338CrossRefGoogle Scholar
Beraldo e Silva, L., de Siquera Pedra, W., Valluri, M., Sodrè, L., & Bru, J.-B. 2019, ApJ 870, 128CrossRefGoogle Scholar
Binney, J. & Tremaine, S. 2008 Galactic dynamics (2nd edition, Princeton University Press)CrossRefGoogle Scholar
Chandrasekhar, S. 1943, ApJ, 97, 255CrossRefGoogle Scholar
Chandrasekhar, S. 1949, Reviews of Modern Physics, 21, 383CrossRefGoogle Scholar
Di Cintio, P. F. & Casetti, L. 2019a MNRAS, 489, 587Google Scholar
Di Cintio, P. F. & Casetti, L. 2019b (submitted, arxiv:1912.07406)Google Scholar
Eddington, A. 1916, MNRAS 76, 525CrossRefGoogle Scholar
Gurzadyan, V. G. & Savvidy, G. K. 1986, A& A 160, 203Google Scholar
Hemsendorf, M. & Merritt, D. 2002, ApJ 580, 606CrossRefGoogle Scholar
Kandrup, H. E. 1980, Phys. Rep., 63, 1CrossRefGoogle Scholar
Kandrup, H. E. & Sideris, I. V.2001 Phys. Rev. E 64, 56209Google Scholar
Kandrup, H. E. & Sideris, I. V. 2003, ApJ 585, 244CrossRefGoogle Scholar
Kandrup, H. E., Sideris, I. V., & Bohn, C. L. 2004, Phys. Rev. St Acc. B. 7, 14202Google Scholar
Lynden-Bell, D. 1969, MNRAS 136, 101CrossRefGoogle Scholar
Sideris, I. V. & Kandrup, H. E.2002 Phys. Rev. E 65, 66203Google Scholar
Vesperini, E. 1992, A& A 266, 215Google Scholar