Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T10:44:14.098Z Has data issue: false hasContentIssue false

The nature of LINER galaxies: Ubiquitous hot old stars and rare accreting black holes

Published online by Cambridge University Press:  25 July 2014

R. Singh
Affiliation:
Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
G. van de Ven
Affiliation:
Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
K. Jahnke
Affiliation:
Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galaxies, which often contain ionised gas, sometimes also exhibit a so-called low-ionisation nuclear emission line region (LINER). For 30 years, this was attributed to a central mass-accreting supermassive black hole (more commonly known as active galactic nucleus or AGN) of low luminosity, making LINER galaxies the largest AGN sub-population, which dominate in numbers over higher AGN-luminosity Seyfert galaxies and quasars. This, however, poses a serious problem. While the inferred energy balance is plausible, many LINERs clearly do not contain any other independent signatures of an AGN. Using integral field spectroscopic data from the CALIFA survey, we compare the observed radial surface brightness profiles with what is expected from illumination by an AGN. For 48 galaxies with LINER-like emission we show, that the radial emission-line surface brightness profiles are inconsistent with ionisation by a central point-source and hence cannot be due to an AGN alone. The most probable explanation for the excess LINER-like emission is ionisation by evolved stars during the short but very hot and energetic phase known as post-AGB. This leads us to an entirely new interpretation. Post-AGB stars are ubiquitous and their ionising effect should be potentially observable in every galaxy with gas present and with stars older than ~1 Gyr, unless a stronger radiation field from young hot stars or an AGN outshines them. This means, that galaxies with LINER-like emission are not a class defined by a property but rather by the absence of a property. It also explains why LINER emission is observed mostly in massive galaxies with old stars and little star formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Heckman, T. M. 1980, A&A, 87, 152Google Scholar
Husemann, B., Jahnke, K., Sánchez, S. F., et al. 2013, A&A, 549, A87Google Scholar
Sánchez, S. F., Kennicutt, R. C., Gil de Paz, A., et al. 2012, A&A, 538, A8Google Scholar
Singh, R., Van de Ven, G., Jahnke, K., et al. 2013, A&A, 558, A43Google Scholar
Stasińska, G., Vale Asari, N., Cid Fernandes, R., et al. 2008, MNRAS, 391, L29CrossRefGoogle Scholar
Terlevich, R. & Melnick, J. 1985, MNRAS, 213, 841Google Scholar