Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T19:58:18.822Z Has data issue: false hasContentIssue false

Mutual influence of magnetic field decay and thermal evolution of rotational neutron stars

Published online by Cambridge University Press:  20 March 2013

Xia Zhou
Affiliation:
Xinjiang Astronomical Observatory, CAS, 150, Science 1-Street, Urumqi, 830011, China Key Laboratory of Radio Astronomy, CAS, Urumqi, 830011, China. email: [email protected], [email protected]
Miao Kang
Affiliation:
College of Physics and Electronics, Henan University, Kaifeng, Henan 475004, China email: [email protected]
Na Wang
Affiliation:
Xinjiang Astronomical Observatory, CAS, 150, Science 1-Street, Urumqi, 830011, China Key Laboratory of Radio Astronomy, CAS, Urumqi, 830011, China. email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of magnetic field decay on the chemical heating and thermal evolution of neutron stars is discussed. Our main goal is to study how chemical heating mechanisms and thermal evolution are changed by field decay and how magnetic field decay is modified by the thermal evolution. We show that the effect of chemical heating is suppressed by the star spin-down through decaying magnetic field at a later stage; magnetic field decay is delayed significantly relative to stars cooling without heating mechanisms; compared to typical chemical heating, the decay of the magnetic field can even cause the temperature to turn down at a later stage.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Becker, W. 2008. eds, Astrophys. Space Sci. Library Vol. 357, Neutron Stars and Pulsars, (Springer, New-York)Google Scholar
Fernández, R. & Reisenegger, A., 2005. Astrophys. J. 625, 291.Google Scholar
Glampedakis, K., Jones, D. I., & Samuelsson, L. 2011, Mon. Not. R. Astron. Soc., 413, 2021CrossRefGoogle Scholar
Glendenning, N. K. 2000, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, (Springer, New-York)CrossRefGoogle Scholar
Goldreich, P., Reisenegger, A. 1992, Astrophys. J., 395, 250CrossRefGoogle Scholar
Heyl, J. S. & Hernquist, L. 1997, Astrophys. J., 491, L95CrossRefGoogle Scholar
Heyl, J. S. & Kulkarni, S. R. 1998, Astrophys. J., 506, L61Google Scholar
Miralles, J. A., Urpin, V., & Konenkov, D. 1998, Astrophys. J., 503, 368CrossRefGoogle Scholar
Reisenegger, A. 1995, Astrophys. J., 442, 749Google Scholar
Wiringa, R. B., Fiks, V., & Fabrocini, A. 1988, Phys. Rev. C, 38, 1010Google Scholar
Yakovlev, D. G., Kaminker, A. D., Gnedin, O. Y., & Haensel, P. 2001, Phys. Rep., 354, 1Google Scholar
Zheng, X. P. & Zhou, X. 2006, Mon. Not. R. Astron. Soc., 371, 1659Google Scholar
Zhou, X., Wang, L. Z., & Zhou, A. Z. 2007, Publ. Astron. Soc. Pac., 119, 1367CrossRefGoogle Scholar