Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T07:09:46.132Z Has data issue: false hasContentIssue false

Multiwavelength Light-Curve Analysis of Cepheid Variables

Published online by Cambridge University Press:  29 August 2019

A. Bhardwaj
Affiliation:
Department of Physics & Astrophysics, University of Delhi, Delhi, India email: [email protected]
S. M. Kanbur
Affiliation:
State University of New York, Oswego, NY, USA
M. Marconi
Affiliation:
INAF-Osservatorio astronomico di Capodimonte, Napoli, Italy
H. P. Singh
Affiliation:
Department of Physics & Astrophysics, University of Delhi, Delhi, India email: [email protected]
M. Rejkuba
Affiliation:
European Southern Observatory, Garching, Germany
C-C. Ngeow
Affiliation:
National Central University, Jhongli, Taiwan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This poster presented results from a detailed analysis of observed and theoretical light-curves of classical Cepheid variables in the Galaxy and the Magellanic Clouds. The theoretical light-curves were based on non-linear convective hydrodynamical pulsation models; the observational data were taken from ongoing wide-field variability surveys. The variation which we found in theoretical and observed light-curve parameters as a function of period, wavelength and metallicity was used to constrain the input physics to the pulsation models, such as the mass–luminosity relations obeyed by Cepheid variables. We also accounted for the variation in the convective efficiency as entered into the stellar pulsation models and its impact on the theoretical amplitudes and Period-Luminosity relations for Cepheid variables.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Anderson, R. I., Saio, H., Ekström, S., Georgy, C., & Meynet, G. 2016, A&A, 591, A8Google Scholar
Bhardwaj, A., Kanbur, S. M., Singh, H. P., & Ngeow, C.-C. 2014, MNRAS, 445, 2655CrossRefGoogle Scholar
Bhardwaj, A., Kanbur, S. M., Singh, H. P., Macri, L. M., & Ngeow, C.-C. 2015, MNRAS, 447, 3342CrossRefGoogle Scholar
Bhardwaj, A., et al. 2016, MNRAS, 457, 164410.1093/mnras/stw040CrossRefGoogle Scholar
Bhardwaj, A., et al. 2017, MNRAS, 466, 2805CrossRefGoogle Scholar
Bono, G., Caputo, F., Castellani, V., & Marconi, M. 1999, ApJ, 512, 711CrossRefGoogle Scholar
Bono, G., Caputo, F., Marconi, M., & Musella, I. 2010, ApJ, 715, 27710.1088/0004-637X/715/1/277CrossRefGoogle Scholar
Bono, G., et al. 2000, ApJ, 543, 95510.1086/317156CrossRefGoogle Scholar
Caputo, F., Marconi, M., & Musella, I. 2000, A&A, 354, 610Google Scholar
Cox, J. P. 1980, Theory of stellar pulsation (Princeton University Press, NJ), p. 393CrossRefGoogle Scholar
Fiorentino, G., Marconi, M., Musella, I., & Caputo, F. 2007, A&A, 476, 863Google Scholar
Freedman, W. L., et al. 2001, ApJ, 553, 47CrossRefGoogle Scholar
Hertzsprung, E. 1926, BAN, 3, 115Google Scholar
Leavitt, H. S., & Pickering, E. C. 1912, HCO Circular, 173, 1Google Scholar
Marconi, M. 2017, EPJ Web Conf., 151, 06001CrossRefGoogle Scholar
Marconi, M., Musella, I., & Fiorentino, G. 2005, ApJ, 632, 59010.1086/432790CrossRefGoogle Scholar
Marconi, M., Molinaro, R., Ripepi, V., Musella, I., & Brocato, E. 2013, MNRAS, 428, 2185CrossRefGoogle Scholar
Marconi, M., et al. 2017, MNRAS, 466, 320610.1093/mnras/stw3289CrossRefGoogle Scholar
Riess, A. G. et al. 2016, ApJ, 826, 5610.3847/0004-637X/826/1/56CrossRefGoogle Scholar
Simon, N. R., Kanbur, S. M., & Mihalas, D. 1993, ApJ, 414, 31010.1086/173077CrossRefGoogle Scholar
Simon, N. R., & Lee, A. S. 1981, ApJ, 248, 29110.1086/159153CrossRefGoogle Scholar
Soszyński, I., et al. 2015, AcA, 65, 297Google Scholar