Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T02:59:09.841Z Has data issue: false hasContentIssue false

Multiple origins of asteroid pairs

Published online by Cambridge University Press:  01 March 2016

Seth A. Jacobson*
Affiliation:
Laboratoire Lagrange, Observatoire de la Côte d'Azur, Boulevard de l'Observatoire, CS 34229, F 06304 Nice Cedex 4, France Bayerisches Geoinstitut, Universtät Bayreuth, D 95440 Bayreuth, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rotationally fissioned asteroids produce unbound asteroid pairs that have very similar heliocentric orbits. Backward integration of their current heliocentric orbits provides an age of closest proximity that can be used to date the rotational fission event. Most asteroid pairs follow a predicted theoretical relationship between the primary spin period and the mass ratio of the two pair members that is a direct consequence of the YORP-induced rotational fission hypothesis. If the progenitor asteroid has strength, asteroid pairs may have higher mass ratios or faster rotating primaries. However, the process of secondary fission leaves the originally predicted trend unaltered. We also describe the characteristics of pair members produced by four alternative routes from a rotational fission event to an asteroid pair. Unlike direct formation from the event itself, the age of closest proximity of these pairs cannot generally be used to date the rotational fission event since considerable time may have passed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bottke, W. F., Vokrouhlický, D., Rubincam, D. P., & Brož, M. (2002). The Effect of Yarkovsky Thermal Forces on the Dynamical Evolution of Asteroids and Meteoroids. Asteroids III, pages 395–408.Google Scholar
Breiter, S., Michalska, H., Vokrouhlický, D., & Borczyk, W. (2007). Radiation-induced torques on spheroids. Astronomy and Astrophysics, 471 (1):345353.CrossRefGoogle Scholar
Ćuk, M. (2007). Formation and Destruction of Small Binary Asteroids. The Astrophysical Journal, 659 (1):L57L60.CrossRefGoogle Scholar
Ćuk, M. & Burns, J. A. (2005). Effects of thermal radiation on the dynamics of binary NEAs. ICARUS, 176 (2):418431.Google Scholar
Duddy, S. R., Lowry, S. C., Wolters, S. D., Christou, A., Weissman, P. R., Green, S. F., & Rozitis, B. (2012). Physical and dynamical characterisation of the unbound asteroid pair 7343-154634. Astronomy and Astrophysics, 539:A36.Google Scholar
Efroimsky, M. (2015). Tidal Evolution of Asteroidal Binaries. Ruled by Viscosity. Ignorant of Rigidity. The Astronomical Journal, 150 (4):98.CrossRefGoogle Scholar
Fang, J. & Margot, J.-L. (2012). Binary Asteroid Encounters with Terrestrial Planets: Timescales and Effects. The Astronomical Journal, 143 (1):25.CrossRefGoogle Scholar
Goldreich, P. & Sari, R. (2009). Tidal Evolution of Rubble Piles. The Astrophysical Journal, 691 (1):5460.Google Scholar
Golubov, O. & Krugly, Y. N. (2012). Tangential Component of the YORP Effect. The Astrophysical Journal Letters, 752 (1):L11.CrossRefGoogle Scholar
Golubov, O., Scheeres, D. J., & Krugly, Y. N. (2014). A Three-dimensional Model of Tangential YORP. The Astrophysical Journal, 794 (1):22.CrossRefGoogle Scholar
Harris, A. W. (1996). The Rotation Rates of Very Small Asteroids: Evidence for ‘Rubble Pile’ Structure. Abstracts of the Lunar and Planetary Science Conference, 27:493.Google Scholar
Hartmann, W. K. & Larson, S. M. (1967). Angular momenta of planetary bodies. ICARUS, 7 (1):257260.Google Scholar
Hergenrother, C. W. & Whiteley, R. J. (2011). A survey of small fast rotating asteroids among the near-Earth asteroid population. ICARUS, 214 (1):194209.Google Scholar
Hirabayashi, M. & Scheeres, D. J. (2015). Stress and Failure Analysis of Rapidly Rotating Asteroid (29075) 1950 DA. The Astrophysical Journal Letters, 798 (1):L8.CrossRefGoogle Scholar
Hirabayashi, M., Scheeres, D. J., Sánchez, D. P., & Gabriel, T. (2014). Constraints on the Physical Properties of Main Belt Comet P/2013 R3 from its Breakup Event. The Astrophysical Journal Letters, 789 (1):L12.Google Scholar
Holsapple, K. A. (2001). Equilibrium Configurations of Solid Cohesionless Bodies. ICARUS, 154 (2):432448.Google Scholar
Jacobson, S. A. (2014). Small asteroid system evolution. Proceedings of the International Astronomical Union, 310:108117.Google Scholar
Jacobson, S. A., Marzari, F., Rossi, A., Scheeres, D. J., & Davis, D. R. (2014a). Effect of rotational disruption on the size-frequency distribution of the Main Belt asteroid population. Monthly Notices of the Royal Astronomical Society: Letters, page L15.Google Scholar
Jacobson, S. A. & Scheeres, D. J. (2011a). Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems. ICARUS, 214 (1):161178.Google Scholar
Jacobson, S. A. & Scheeres, D. J. (2011b). Long-term Stable Equilibria for Synchronous Binary Asteroids. The Astrophysical Journal Letters, 736 (1):L19.Google Scholar
Jacobson, S. A., Scheeres, D. J., & McMahon, J. W. (2014b). Formation of the Wide Asynchronous Binary Asteroid Population. The Astrophysical Journal, 780 (1):60.Google Scholar
Kaasalainen, M., Ďurech, J., Warner, B. D., Krugly, Y. N., & Gaftonyuk, N. M. (2007). Acceleration of the rotation of asteroid 1862 Apollo by radiation torques. Nature, 446 (7):420422.Google Scholar
Lowry, S. C., Fitzsimmons, A., Pravec, P., Vokrouhlický, D., Boehnhardt, H., Taylor, P. A., Margot, J.-L., Galad, A., Irwin, M., Irwin, J., & Kusnirák, P. (2007). Direct Detection of the Asteroidal YORP Effect. Science, 316 (5):272.CrossRefGoogle ScholarPubMed
McMahon, J. W. & Scheeres, D. J. (2010a). Detailed prediction for the BYORP effect on binary near-Earth Asteroid (66391) 1999 KW4 and implications for the binary population. ICARUS, 209 (2):494509.CrossRefGoogle Scholar
McMahon, J. W. & Scheeres, D. J. (2010b). Secular orbit variation due to solar radiation effects: a detailed model for BYORP. Celestial Mechanics and Dynamical Astronomy, 106 (3):261300.Google Scholar
McMahon, J. W. & Scheeres, D. J. (2012). Binary-YORP Coefficients for Known Asteroid Shapes. Bulletin of the American Astronomical Society, 44.Google Scholar
Moskovitz, N. A. (2012). Colors of dynamically associated asteroid pairs. ICARUS, 221 (1):6371.Google Scholar
Nesvorný, D. & Vokrouhlický, D. (2007). Analytic Theory of the YORP Effect for Near-Spherical Objects. The Astronomical Journal, 134 (5):1750.Google Scholar
Pravec, P. & Harris, A. W. (2000). Fast and Slow Rotation of Asteroids. ICARUS, 148 (1):1220.Google Scholar
Pravec, P., Harris, A. W., & Warner, B. D. (2007). NEA rotations and binaries. Near Earth Objects, 236:167176.Google Scholar
Pravec, P., Kusnirák, P., Hornoch, K., Galad, A., Krugly, Y. N., Chiorny, V. G., Inasaridze, R. Y., Kvaratskhelia, O., Ayvazian, V., Parmonov, O., Pollock, J., Mottola, S., Oey, J., Pray, D., Žižka, J., Vraštil, J., Molotov, I. E., Reichart, D. E., Ivarsen, K. M., Haislip, J. B., & Lacluyze, A. P. (2013). (8306) Shoko. IAU Circ., 9268:1.Google Scholar
Pravec, P. & Vokrouhlický, D. (2009). Significance analysis of asteroid pairs. ICARUS, 204 (2):580588.Google Scholar
Pravec, P., Vokrouhlický, D., Polishook, D., Scheeres, D. J., Harris, A. W., Galad, A., Vaduvescu, O., Pozo, F., Barr, A., Longa, P., Vachier, F., Colas, F., Pray, D. P., Pollock, J., Reichart, D. E., Ivarsen, K. M., Haislip, J. B., Lacluyze, A. P., Kusnirák, P., Henych, T., Marchis, F., Macomber, B., Jacobson, S. A., Krugly, Y. N., Sergeev, A. V., & Leroy, A. (2010). Formation of asteroid pairs by rotational fission. Nature, 466 (7):10851088.CrossRefGoogle ScholarPubMed
Rozitis, B., MacLennan, E., & Emery, J. P. (2014). Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA. Nature, 512 (7):174176.Google Scholar
Rubincam, D. P. (2000). Radiative Spin-up and Spin-down of Small Asteroids. ICARUS, 148 (1):211.Google Scholar
Sánchez, D. P. & Scheeres, D. J. (2014). The strength of regolith and rubble pile asteroids. Meteoritics & Planetary Science, 49 (5):788811.Google Scholar
Scheeres, D. J. (2007a). Rotational fission of contact binary asteroids. ICARUS, 189:370.Google Scholar
Scheeres, D. J. (2007b). The dynamical evolution of uniformly rotating asteroids subject to YORP. ICARUS, 188 (2):430450.Google Scholar
Scheeres, D. J. (2009). Stability of the planar full 2-body problem. Celestial Mechanics and Dynamical Astronomy, 104 (1):103128.Google Scholar
Scheirich, P., Pravec, P., Jacobson, S. A., Ďurech, J., Kusnirák, P., Hornoch, K., Mottola, S., Mommert, M., Hellmich, S., Pray, D., Polishook, D., Krugly, Y. N., Inasaridze, R. Y., Kvaratshelia, O. I., Ayvazian, V., Slyusarev, I., Pittichová, J., Jehin, E., Manfroid, J., Gillon, M., Galad, A., Pollock, J., Licandro, J., Alí-Lagoa, V., Brinsfield, J., & Molotov, I. E. (2015). The binary near-Earth Asteroid (175706) 1996 FG3 - An observational constraint on its orbital evolution. ICARUS, 245:5663.Google Scholar
Sharma, I. (2009). The equilibrium of rubble-pile satellites: The Darwin and Roche ellipsoids for gravitationally held granular aggregates. ICARUS, 200 (2):636654.Google Scholar
Taylor, P. A., Margot, J.-L., Vokrouhlický, D., Scheeres, D. J., Pravec, P., Lowry, S. C., Fitzsimmons, A., Nolan, M. C., Ostro, S. J., Benner, L. A. M., Giorgini, J. D., & Magri, C. (2007). Spin Rate of Asteroid (54509) 2000 PH5 Increasing Due to the YORP Effect. Science, 316 (5):274.Google Scholar
Vokrouhlický, D. (2009). (3749) Balam: A Very Young Multiple Asteroid System. The Astrophysical Journal Letters, 706 (1):L37L40.Google Scholar
Vokrouhlický, D. & Čapek, D. (2002). YORP-Induced Long-Term Evolution of the Spin State of Small Asteroids and Meteoroids: Rubincam's Approximation. ICARUS, 159 (2):449467.Google Scholar
Vokrouhlický, D. & Nesvorný, D. (2008). Pairs of Asteroids Probably of a Common Origin. The Astronomical Journal, 136 (1):280290.Google Scholar
Vokrouhlický, D. & Nesvorný, D. (2009). The Common Roots of Asteroids (6070) Rheinland and (54827) 2001 NQ8. The Astronomical Journal, 137 (1):111117.Google Scholar
Vokrouhlický, D., Nesvorný, D., & Bottke, W. F. (2003). The vector alignments of asteroid spins by thermal torques. Nature, 425 (6):147151.Google Scholar
Walsh, K. J., Richardson, D. C., & Michel, P. (2008). Rotational breakup as the origin of small binary asteroids. Nature, 454 (7):188191.Google Scholar
Wolters, S. D., Weissman, P. R., Christou, A., Duddy, S. R., & Lowry, S. C. (2014). Spectral similarity of unbound asteroid pairs. Monthly Notices of the Royal Astronomical Society, 439 (3):30853093.Google Scholar