Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T22:18:50.662Z Has data issue: false hasContentIssue false

Multi-messenger science with Athena and Future Multi-messenger Observatories

Published online by Cambridge University Press:  27 February 2023

Luigi Piro*
Affiliation:
INAF – Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Rome, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Scientific synergies between Athena and some of the key multi-messenger facilities that should be operative concurrently with Athena are presented. These facilities include LIGO A+, Advanced Virgo+ and future detectors for ground-based observation of gravitational waves (GW), LISA for space-based observations of GW, IceCube and KM3NeT for neutrino observations, CTA for very high energy observations. Multimessenger synergy science themes discussed here include pressing issues in the field of Astrophysics, Cosmology and Fundamental physics such as: the central engine and jet physics in compact binary mergers, accretion processes and jet physics in SMBBHs and in compact stellar binaries, the equation of state in neutron stars, cosmic accelerators and the origin of cosmic rays, the origin of intermediate and high-Z elements in the Universe, the Cosmic distance scale and tests of General Relativity and Standard Model. Observational strategies for implementing the identified science topics are also discussed.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Aartsen, M. G. 2017, ApJ, 45Google Scholar
Abbott, R. and Abbott, T. D. and Abraham, S. 2021, Physical Review X, 11, 021053 CrossRefGoogle Scholar
Ade, P.A.R. 2016, A&A, 594, A13 Google Scholar
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R. 2007, ApJ, 661, 236249 CrossRefGoogle Scholar
Amaro-Seoane, P., Audley, H., Babak, S. 2017, arXiv e-prints, 1702.00786Google Scholar
Barausse, E., Dvorkin, I., Tremmel, M. 2020, ApJ, 904, 16 CrossRefGoogle Scholar
Barret, D. 2021, in preparationGoogle Scholar
Bowen, D. B., Mewes, V., Campanelli, M. 2018, ApJl, 853, L17 CrossRefGoogle Scholar
Ghirlanda, G., Salafia, O. S., Paragi, Z. 2019, Science, 363, 968971 CrossRefGoogle Scholar
Grimm, S. and Harms, J. 2020, Phys. Rev. D, 102, 022007 CrossRefGoogle Scholar
Hall, E. 2019a, LIGO Document T1800084-v6 Google Scholar
Hall, E., Evans, M. 2019b, Classical and Quantum Gravity, 36, 225002 CrossRefGoogle Scholar
Hall, E. and Vitale, S. 2019c, LIGO Document G1900803-v1,Google Scholar
Hotokezaka, K., Kiuchi, K., Kyutoku, K. 2013, prd, 87, 024001Google Scholar
Khan, A., Paschalidis, V., Ruiz, M. 2018, PRD, 97, 044036 CrossRefGoogle Scholar
Kormendy, J. and Ho, L. C. 2013, ARAA, 51, 511653 CrossRefGoogle Scholar
Lamb, G. P., Lyman, J. D., Levan, A. J. 2019, ApJl, 870, L15 CrossRefGoogle Scholar
Mangiagli, A. and Klein, A. and Bonetti, M. 2020, PRD, 102, 084056CrossRefGoogle Scholar
Meidinger, N. and Albrecht, S. and Beitler, C 2020, Society of Photo-Optical Instrumen-tation Engineers (SPIE) Conference Series, 11444, 114440TGoogle Scholar
Mooley, K.P., Frail, D.A., Dobie, D. 2018, ApJl, 868, L11 CrossRefGoogle Scholar
Mooley, K. P., Deller, A. T., Gottlieb, O. 2018, Nature, 561, 355359 CrossRefGoogle Scholar
Murase, K., Guetta, D., Ahlers, M. 2016, PhysRevLett., 116,Google Scholar
Nakar, E. and Piran, T. 2011, Nature, 478, 8284 CrossRefGoogle Scholar
Nousek, J. A. 2006, ApJ, 642, 389400 CrossRefGoogle Scholar
Piro, L., Ahlers, M., Coleiro, A. 2021, arXiv:2110.15677 Google Scholar
Ricci, C., Kara, E., Loewenstein, M. 2020, ApJl, 898, L1 CrossRefGoogle Scholar
Ricci, R., Troja, E., Bruni, G. 2021, MNRAS, 500, 17081720 CrossRefGoogle Scholar
Sari, R., Piran, T., Narayan, R. 1998, ApJl, 497, L17L20 Google Scholar
Sathyaprakash, B., Bailes, M., Kasliwal, M. M., 2019, BAAS, 51, 276 Google Scholar
Tang, Y., Haiman, Z., MacFadyen, A. 2018, MNRAS, 476, 22492257 CrossRefGoogle Scholar
Troja, E., Piro, L., Ryan, G. 2018, MNRAS, 478, L18L23 CrossRefGoogle Scholar
Troja, E., van Eerten, H., Ryan, G. 2019, MNRAS, 489, 19191926 Google Scholar
Troja, E., van Eerten, H., Zhang, B. 2020, MNRAS, 498, 56435651 CrossRefGoogle Scholar
van Eerten, H. J. 2015, Journal of High Energy Astrophysics, 7, 2334 CrossRefGoogle Scholar
Vink, J., Yamazaki, R., Helder, E. A., et al. 2010, ApJ, 722, 1727 CrossRefGoogle Scholar
Vitale, S. and Evans, M. 2017, Phys. Rev. D, 95, 064052 CrossRefGoogle Scholar
Vitale, S. and Whittle, C. 2018, Phys. Rev. D, 98, 024029 CrossRefGoogle Scholar
Vitale, S., Farr, W. M., Ng, K., Rodriguez, C. L. 2019, ApJ, 886, L1 CrossRefGoogle Scholar
Zhang, B., Fan, Y. Z., Dyks, J. 2006, ApJ, 642, 354370 CrossRefGoogle Scholar