Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T02:43:25.911Z Has data issue: false hasContentIssue false

Multimessenger Predictions from 3D General-Relativistic Core-Collapse Supernovae Models

Published online by Cambridge University Press:  17 October 2017

Kei Kotake
Affiliation:
Department of Applied Physics, Fukuoka University, Jonan, Nanakuma, Fukuoka 814-0180, Japan
Takami Kuroda
Affiliation:
Institute of Kernphysik, Technische Universtät Darmstadt, D-64289 Darmstadt, Germany
Kazuhiro Hayama
Affiliation:
Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this contribution, we present results from fully general-relativistic three-dimensional (3D) simulations of a non-rotating 15M star using different nuclear equations of state (EOSs). We show that the SASI (standing-accretion-shock-instability) activity occurs much more vigorously in models with softer EOS. By performing detailed analysis of the gravitational-wave (GW) emission, we find a new GW signature that is produced predominantly by the SASI-induced downflows to the proto-neutron star. We discuss the detectability of the GW signal by performing a coherent network analysis where multiple detectors including LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA are considered. We point out that the GW signal, whose typical frequency is in the best sensitivity range of the laser-interferometers, could potentially provide the live broadcast that pictures how the supernova shock is dancing in the core. The detection horizon of the signal is estimated as 2~3 kpc for the current generation detectors, which can extend up to ~100 kpc for the third generation detectors like Cosmic Explorer. We furthermore perform a correlation analysis between the SASI-modulated GW and neutrino signals. Our results show that the time correlation of the two signals becomes highest when we take into account the travel timescale of adverting material from the (average) neutrino-sphere to the proto-neutron star surface.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abe, K., Abe, T., Aihara, H., et al. 2011, arXiv:1109.3262Google Scholar
Abbott, B. P., Abbott, R., et al. 2016, Physical Review Letters, 116, 061102 CrossRefGoogle Scholar
Abbott, B. P., et al. 2017, Classical and Quantum Gravity, 34, 044001 CrossRefGoogle Scholar
Aso, Y., Michimura, Y., Somiya, K., et al. 2013, Phys. Rev. D, 88, 043007 Google Scholar
Andresen, H., Mueller, B., Mueller, E., & Janka, H.-T. 2016, arXiv:1607.05199Google Scholar
Baumgarte, T. W. & Shapiro, S. L. 1999, Phys. Rev. D, 59, 024007 Google Scholar
Bethe, H. A. 1990, Reviews of Modern Physics, 62, 801 CrossRefGoogle Scholar
Burrows, A. 2013, Reviews of Modern Physics, 85, 245 Google Scholar
Fischer, T., Hempel, M., et al. 2014, European Physical Journal A, 50, 46 CrossRefGoogle Scholar
Foglizzo, T., Kazeroni, R., Guilet, J., et al. 2015, Publications of the Astron. Soc. of Australia, 32, e009 CrossRefGoogle Scholar
Grefenstette, B. W., Reynolds, S. P., Harrison, F. A., et al. 2015, ApJ, 802, 15 Google Scholar
Hayama, K., Kuroda, T., Kotake, K., & Takiwaki, T. 2015, Phys. Rev. D, 92, 122001 CrossRefGoogle Scholar
Hempel, M. & Schaffner-Bielich, J. 2010, Nuclear Physics A, 837, 210 CrossRefGoogle Scholar
Hild, S., Freise, A., Mantovani, M., et al. 2009, Classical and Quantum Gravity, 26, 025005 CrossRefGoogle Scholar
Hirata, K., Kajita, T., Koshiba, M., Nakahata, M., & Oyama, Y. 1987, Physical Review Letters, 58, 1490 CrossRefGoogle Scholar
Janka, H.-T., Melson, T., & Summa, A. 2016, Annual Review of Nuclear and Particle Science, 66, 341 CrossRefGoogle Scholar
Kotake, K., Sumiyoshi, K., Yamada, S., et al. 2012, Progress of Theoretical and Experimental Physics, 2012, 01A301 CrossRefGoogle Scholar
Kotake, K. 2013, Comptes Rendus Physique, 14, 318 Google Scholar
Kuroda, T., Kotake, K., & Takiwaki, T. 2012, ApJ, 755, 11 CrossRefGoogle Scholar
Kuroda, T., Takiwaki, T., & Kotake, K. 2014, Phys. Rev. D, 89, 044011 CrossRefGoogle Scholar
Kuroda, T., Takiwaki, T., & Kotake, K. 2016, ApJS, 222, 20 CrossRefGoogle Scholar
Kuroda, T., Kotake, K., & Takiwaki, T. 2016, ApJL, 829, L14 Google Scholar
Maeda, K., Kawabata, K., Mazzali, P. A., et al. 2008, Science, 319, 1220 Google Scholar
Misner, C. W., Thorne, K. S., & Wheeler, J. A. 1973, GravitationGoogle Scholar
Müller, B. 2016, Publications of the Astron. Soc. of Australia, 33, e048 CrossRefGoogle Scholar
Müller, B., Janka, H.-T., & Marek, A. 2013, ApJ, 766, 43 Google Scholar
Murphy, J. W., Ott, C. D., & Burrows, A. 2009, ApJ, 707, 1173 CrossRefGoogle Scholar
Shibata, M. & Nakamura, T. 1995, Phys. Rev. D, 52, 5428 Google Scholar
Steiner, A. W., Hempel, M., & Fischer, T. 2013, ApJ, 774, 17 CrossRefGoogle Scholar
Takiwaki, T., Kotake, K., & Suwa, Y. 2016, MNRAS, 461, L112 CrossRefGoogle Scholar
Tamborra, I., Hanke, F., Müller, B., Janka, H.-T., & Raffelt, G. 2013, Physical Review Letters, 111, 121104 Google Scholar
Tamborra, I., Raffelt, G., Hanke, F., Janka, H.-T., & Müller, B. 2014, Phys. Rev. D, 90, 045032 CrossRefGoogle Scholar
Tanaka, M., Maeda, K., Mazzali, P. A., Kawabata, K. S., & Nomoto, K. 2017, ApJ, 837, 105 Google Scholar
Woosley, S. E. & Weaver, T. A. 1995, ApJS, 101, 181 CrossRefGoogle Scholar
Yakunin, K. N., Mezzacappa, A., Marronetti, P., et al. 2017, arXiv:1701.07325Google Scholar