Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T07:34:13.186Z Has data issue: false hasContentIssue false

Multilayered solar interface dynamos: from a Cartesian kinematic dynamo to a spherical dynamic dynamo

Published online by Cambridge University Press:  01 September 2007

Kit H. Chan
Affiliation:
Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong email:[email protected]
Xinhao Liao
Affiliation:
Shanghai Astronomical Observatory, Shanghai 200030, China email:[email protected]
Keke Zhang
Affiliation:
Center for Geophysical & Astrophysical Fluid Dynamics, University of Exeter, UK email:[email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The existence of the solar tachocline, a thin differentially rotating layer at the base of the convection zone which is inferred from helioseismology, leads to the concept of an interface dynamo. The tachocline is magnetically coupled to the radiative interior and the overlying convection zone. A multilayered interface dynamo is required to describe the dynamo process involved. We first discuss a two-dimensional multilayered interface dynamo model in cartesian geometry consisting of four horizontal layers with different magnetic diffusivities magnetically coupled by the three sets of interface matching conditions for the generated magnetic field. Exact solutions of the coupled dynamo system are obtained in this model. We then discuss a fully three-dimensional and multi-layered spherical dynamic interface dynamo using a finite element method based on the three-dimensional tetrahedralization of the whole spherical system. The spherical dynamic interface dynamo also consists of four magnetically coupled zones. In the convection zone, the fully three-dimensional dynamic feedback of Lorentz forces is taken into account. It is shown that the dynamo is characterized by a strong toroidal magnetic field, selects dipolar symmetry and propagates equatorward.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Brandenburg, A., Krause, F., Meinel, R., Moss, D., & Tuominen, I. 1989, Astronomy and Astrophy, 213, 411Google Scholar
Brown, T.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O., and Morrow, C.A.Astrophy. J., 1989, 343, 526CrossRefGoogle Scholar
Brun, A.S. & Toomre, J. 2002, Astrophy. J., 570, 865CrossRefGoogle Scholar
Bushby, P. J. 2003, MNRAS, 342, L15CrossRefGoogle Scholar
Chan, K. H., Liao, X., Zhang, K. and Jones, C.A., 2004, Astron. Astrophy., 423, L37.CrossRefGoogle Scholar
Chan, K. H., Zhang, K., Li, L., & Liao, X. 2007, Phys. Earth Planet. Inter., 163, 251CrossRefGoogle Scholar
Charbonneau, P., & MacGregor, K. B. 1997, Astrophy. J., 486, 502CrossRefGoogle Scholar
Dikpati, M., & Charbonneau, P. 1999, Astrophy. J., 518, 508CrossRefGoogle Scholar
Garaud, P., 2002, MNRAS, 329, 1CrossRefGoogle Scholar
Gough, D. O., & McIntyre, M. E. 1998, Nature, 394, 755CrossRefGoogle Scholar
Hoyt, D.V. and Schatten, K.H. 1997, The role of the Sun in climate change Oxford University Press.CrossRefGoogle Scholar
MacGregor, K. B., & Charbonneau, P. 1997, Astrophy. J., 486, 484CrossRefGoogle Scholar
Markiel, J. A., & Thomas, J. H. 1999, Astrophy. J., 523, 827CrossRefGoogle Scholar
Parker, E. N. 1993, Astrophy. J., 408, 707CrossRefGoogle Scholar
Ponty, Y., Gilbert, A., & Soward, A. M. 2001, J. Fluid Mech., 435, 261CrossRefGoogle Scholar
Schou, J., et al. 1998, Astrophy. J., 505, 390CrossRefGoogle Scholar
Spiegel, E. A., & Zahn, J.-P. 1992, A & A, 265, 106Google Scholar
Tobias, S. M. 1997, Geophys. Astrophys. Fluid Dynamics, 86, 287CrossRefGoogle Scholar
Zhang, K., Chan, K. H., Zou, J., Liao, X. and Schubert, G. 2003 Astrophy. J., 596,663CrossRefGoogle Scholar
Zhang, K., Liao, X., and Schubert, G., 2004, Astrophy. J., 602, 468CrossRefGoogle Scholar
Zhang, K. and Schubert, G., 2006, Rep. Prog. Phys. 69, 1581.CrossRefGoogle Scholar