Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T19:59:43.161Z Has data issue: false hasContentIssue false

Multi-flux-rope system in solar active regions

Published online by Cambridge University Press:  24 September 2020

Yijun Hou
Affiliation:
CAS Key Laboratory of Solar Activity, National Astronomical Observatories Chinese Academy of Sciences, Beijing100101, China University of Chinese Academy of Sciences, Beijing100049, China email: [email protected]
Jun Zhang
Affiliation:
CAS Key Laboratory of Solar Activity, National Astronomical Observatories Chinese Academy of Sciences, Beijing100101, China University of Chinese Academy of Sciences, Beijing100049, China email: [email protected]
Ting Li
Affiliation:
CAS Key Laboratory of Solar Activity, National Astronomical Observatories Chinese Academy of Sciences, Beijing100101, China University of Chinese Academy of Sciences, Beijing100049, China email: [email protected]
Shuhong Yang
Affiliation:
CAS Key Laboratory of Solar Activity, National Astronomical Observatories Chinese Academy of Sciences, Beijing100101, China University of Chinese Academy of Sciences, Beijing100049, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic flux rope (MFR) is closely connected with solar eruptions, such as flares and coronal mass ejections. The classical scenario assumes a single MFR for each eruption, but it is reasonable to expect multiple MFRs in a complex active region (AR). Statistically investigating AR 11897, we verify the existence of multiple MFR proxies during the AR evolution. Recently, AR 12673 in 2017 September produced the two largest flares in Solar Cycle 24. The evolutions of the AR magnetic fields and the two large flares reveal that significant flux emergence and successive interactions between different emerging dipoles resulted in the formations of multiple MFRs and twisted loop bundles, which successively erupted like a chain reaction within several minutes before the peaks of the two flares. We propose that the eruptions of a multi-flux-rope system can rapidly release enormous magnetic energy and result in large flares in solar AR.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Awasthi, A. K., Liu, R., Wang, H., Wang, Y., & Shen, C. 2018, ApJ, 857, 124CrossRefGoogle Scholar
Cheng, X., Zhang, J., Liu, Y., & Ding, M. D. 2011, ApJ (Letters), 732, L25CrossRefGoogle Scholar
Chintzoglou, G., Patsourakos, S., & Vourlidas, A. 2015, ApJ, 809, 34CrossRefGoogle Scholar
Guo, Y., Schmieder, B., Démoulin, P., et al. 2010, ApJ, 714, 343CrossRefGoogle Scholar
Hou, Y. J., Li, T., & Zhang, J. 2016, A&A, 592, A138CrossRefGoogle Scholar
Hou, Y. J., Zhang, J., Li, T., Yang, S. H., & Li, X. H. 2018, A&A, 619, A100CrossRefGoogle Scholar
Hou, Y., Li, T., Yang, S., & Zhang, J. 2019, ApJ, 871, 4CrossRefGoogle Scholar
Jiang, C., Zou, P., Feng, X., et al. 2018, ApJ, 869, 13CrossRefGoogle Scholar
Kliem, B., Titov, V. S., & Török, T. 2004, A&A, 413, L23CrossRefGoogle Scholar
Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, Solar Phys., 275, 17Google Scholar
Li, T. & Zhang, J. 2013, ApJ (Letters), 778, L29CrossRefGoogle Scholar
Liu, L., Cheng, X., Wang, Y., Zhou, Z., Guo, Y., Cui, J. 2018, ApJ (Letters), 867, L5.Google Scholar
Liu, R., Kliem, B., Török, T., et al. 2012, ApJ, 756, 59CrossRefGoogle Scholar
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, Solar Phys., 275, 3CrossRefGoogle Scholar
Priest, E. R. & Forbes, T. G. 2002, A&AR, 10, 313CrossRefGoogle Scholar
Schmieder, B., Aulanier, G., & Vršnak, B. 2015, Solar Phys., 290, 3457CrossRefGoogle Scholar
Schou, J., Scherrer, P. H., Bush, R. I., et al. 2012, Solar Phys., 275, 229Google Scholar
Shen, C., Li, G., Kong, X., et al. 2013, ApJ, 763, 114CrossRefGoogle Scholar
Shen, Y., Liu, Y., & Su, J. 2012, ApJ, 750, 12CrossRefGoogle Scholar
Török, T., Panasenco, O., Titov, V. S., et al. 2011, ApJ (Letters), 739, L63CrossRefGoogle Scholar
Wiegelmann, T., Thalmann, J. K., Inhester, B., et al. 2012, Solar Phys., 281, 37Google Scholar
Yan, X. L., Wang, J. C., Pan, G. M., et al. 2018, ApJ, 856, 79CrossRefGoogle Scholar
Yang, S., Zhang, J., Zhu, X., & Song, Q. 2017, ApJ (Letters), 849, L21CrossRefGoogle Scholar
Zhang, J., Yang, S. H., & Li, T. 2015, A&A, 580, A2CrossRefGoogle Scholar