Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T02:21:11.376Z Has data issue: false hasContentIssue false

Multiband Transit Light Curve Modeling of WASP-4

Published online by Cambridge University Press:  23 April 2012

N. Nikolov
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany email: [email protected]
J. Koppenhoefer
Affiliation:
Universitäts-Sternwarte München, Scheinerstr. 1, 81679 Munich, Germany Max Planck Institute for Extraterrestrial Physics, Geissenbachstr., 85748 Garching, Germany
M. Lendl
Affiliation:
Observatoire de Genève, Universitè de Genève, 51 chemin des Maillettes, 1290 Sauverny, Switzerland
T. Henning
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany email: [email protected]
J. Greiner
Affiliation:
Max Planck Institute for Extraterrestrial Physics, Geissenbachstr., 85748 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report on the simultaneous g′,r′,i′,z′ multiband, high time sampling (18-24s) ground-based photometric observations, which we use to measure the planetary radius and orbital inclination of the extrasolar transiting hot Jupiter WASP-4b. We recorded 987 images during three complete transits with the GROND instrument, mounted on the MPG/ESO-2.2m telescope at La Silla Observatory. Assuming a quadratic law for the stellar limb darkening we derive system parameters by fitting a composite transit light curve over all bandpasses simultaneously. To compute uncertainties of the fitted parameters we employ the Bootstrap Monte Carlo Method. The three central transit times are measured with precision down to 6 s. We find a planetary radius Rp = 1.413 ± 0.020RJup, an orbital inclination i = 88.°57 ± 0.45° and calculate new ephemeris, a period P = 1.33823144 ± 0.00000032 days and reference transit epoch T0 = 2454697.798311 ± 0.000046 (BJD). The analysis of the new transit mid-times in combination with previous measurements imply a constant orbital period and no compelling evidence for TTVs due to additional bodies in the system.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Mandel, K. & Agol, E. 2002, ApJ, 580L, 171CrossRefGoogle Scholar
Pont, F., Zucker, S., & Queloz, D. 2006, MNRAS, 373, 231CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical recipes in C. The art of scientific computing, ed. T.S.A.V.W.T.F.B.P. Press, W. H.Google Scholar
Wilson, D. M., Gillon, M., Hellier, C., et al. , 2008, ApJ, 675, 113CrossRefGoogle Scholar