Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-12T22:22:29.022Z Has data issue: false hasContentIssue false

Morpho-kinematics around cool evolved stars Unveiling the underlying companion

Published online by Cambridge University Press:  30 November 2022

I. El Mellah
Affiliation:
Institut de Planétologie et d’Astrophysique de Grenoble, UGA-CNRS, rue de la Piscine, 38400 email: [email protected]
J. Bolte
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
L. Decin
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
W. Homan
Affiliation:
Institut d’Astronomie et d’Astrophysique, campus Plaine, Boulevard du Triomphe, Brussels, Belgium
R. Keppens
Affiliation:
Centre for mathematical Plasma-Astrophysics, Celestijnenlaan 200B, 3001 Leuven, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Because they lose tremendous amounts of mass, cool evolved stars are major sources of dust and molecules for the interstellar medium. Spectro-imaging of the dust-driven winds around these stars has enabled us to identify recurring nonspherical patterns (e.g. spirals, arcs, compressed wind). We use radiative-hydrodynamic simulations of dust-driven winds to study the imprints left in the wind by an orbiting stellar or sub-stellar companion. We designed 3D numerical setup to solve the wind dynamics beyond the dust condensation radius and follow the flow up to several hundreds of stellar radii. Non-uniform grids enable us to capture small scale features such as shocks or disks forming around the orbiting object. Depending on its mass and orbital parameters, we reproduced typical non-spherical features such as arcs, spirals, petals and orbital density enhancements, and identified patterns associated to eccentric orbits.

Type
Contributed Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bowen, G. 1988, ApJ, 329, 9, 299 CrossRefGoogle Scholar
Decin, L., Montargès, M., Richards, A. M.S., Gottlieb, C. A., Homan, W., McDonald, I., El Mellah, I., Danilovich, T., Wallström, S. H.J., Zijlstra, A., Baudry, A., Bolte, J., Cannon, E., De Beck, E., De Ceuster, F., de Koter, A., De Ridder, J., Etoka, S., Gobrecht, D., Gray, M., Herpin, F., Jeste, M., Lagadec, E., Kervella, P., Khouri, T., Menten, K., Millar, T. J., Müller, H. S.P., Plane, J. M.C., Sahai, R., Sana, H., Van de Sande, M., Waters, L. B.F.M., Wong, K. T., Yates, J. 2020, Science, 369, 6509, 1497 CrossRefGoogle Scholar
Decin, L., Homan, W., Danilovich, T., de Koter, A., Engels, D., Waters, L.B.F.M., Muller, S., Gielen, C., Garca-Hernández, D. A., Stancliffe, R. J., Van de Sande, M., Molenberghs, G., Kerschbaum, F., Zijlstra, A. A., El Mellah, I. 2019, Nature Astronomy, 3, 5, 408 CrossRefGoogle Scholar
El Mellah, I. and Casse, F. 2015, MNRAS, 454, 3, 2657 CrossRefGoogle Scholar
El Mellah, I., Sander, A. A. C., Sundqvist, J. O., Keppens, R. 2019, A&A, 622, A189 Google Scholar
El Mellah, I. et al. 2020, A&A, 637, A91 Google Scholar
Freytag, B., Liljegren, S., Höfner, S. 2017, A&A, 600, A137 Google Scholar
Höfner, S., Olofsson, H. 2018, AAR, 26, 1 Google Scholar
Kee, N. D., Sundqvist, J. O., Decin, L., De Koter, A., Sana, H. 2021, A&A, 646, A180 Google Scholar
Mohamed, S. and Podsiadlowski, P. 2007, PhD ManuscriptGoogle Scholar
Van de Sande, M., Walsh, C., Mangan, T. P., Decin, L. 2019, MNRAS, 490, 2, 2023 CrossRefGoogle Scholar
Xia, C., Teunissen, J., El Mellah, I., Chané, E., Keppens, R. 2017, ApJS, 234, 2, 30 CrossRefGoogle Scholar