Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:15:53.877Z Has data issue: false hasContentIssue false

Molecules in the circumnuclear disk of the Galactic center

Published online by Cambridge University Press:  22 May 2014

Nanase Harada
Affiliation:
Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121, Bonn, Germany email: [email protected]
Denise Riquelme
Affiliation:
Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121, Bonn, Germany email: [email protected]
Serena Viti
Affiliation:
University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, UK
Karl Menten
Affiliation:
Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121, Bonn, Germany email: [email protected]
Miguel Requena-Torres
Affiliation:
Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121, Bonn, Germany email: [email protected]
Rolf Güsten
Affiliation:
Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121, Bonn, Germany email: [email protected]
Stefan Hochgürtel
Affiliation:
Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121, Bonn, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Within a few parsecs around the central black hole A*, chemistry in the dense molecular cloud material of the circumnuclear disk (CND) can be affected by many energetic phenomena such as high UV-flux from the massive central star cluster, X-rays from A*, shock waves, and an enhanced cosmic-ray flux. Recently, spectroscopic surveys with the IRAM 30 meter and the APEX 12 meter telescopes of substantial parts of the 80–500 GHz frequency range were made toward selected positions in and near the CND. These data sets contain lines from the molecules HCN, HCO+, HNC, CS, SO, SiO, CN, H2CO, HC3N, N2H+, H3O+ and others. We conduct Large Velocity Gradient analyses to obtain column densities and total hydrogen densities, n, for each species in molecular clouds located in the southwest lobe of the CND. The data for the above mentioned molecules indicate 105 cm−3 ≲ n < 106 cm−3, which shows that the CND is tidally unstable. The derived chemical composition is compared with a chemical model calculated using the UCL_CHEM code that includes gas and grain reactions, and the effects of shock waves. Models are run for varying shock velocities, cosmic-ray ionization rates, and number densities. The resulting chemical composition is fitted best to an extremely high value of cosmic-ray ionization rate ζ ∼ 10−14 s−1, 3 orders of magnitude higher than the value in regular Galactic molecular clouds, if the pre-shock density is n=105 cm−3.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Baganoff, F. K., Maeda, Y., Morris, M., et al. 2003, ApJ 591, 891Google Scholar
Bradford, C. M., Stacey, G. J., Nikola, T., et al. 2005, ApJ 623, 866Google Scholar
Chernyakova, M., Malyshev, D., Aharonian, F. A., Crocker, R. M., & Jones, D. I. 2011, ApJ 726, 60Google Scholar
Christopher, M. H., Scoville, N. Z., Stolovy, S. R., & Yun, M. S. 2005, ApJ 622, 346CrossRefGoogle Scholar
Garrod, R. T., Wakelam, V., & Herbst, E. 2007, A&A 467, 1103Google Scholar
Goicoechea, J. R., Pety, J., Gerin, M., et al. 2006, A&A 456, 565Google Scholar
Goto, M., Usuda, T., Nagata, T., et al. 2008, ApJ 688, 306Google Scholar
Indriolo, N. & McCall, B. J. 2012, ApJ 745, 91Google Scholar
Koyama, K., Maeda, Y., Sonobe, T., et al. 1996, PASJ 48, 249CrossRefGoogle Scholar
Maloney, P. R., Hollenbach, D. J., & Tielens, A. G. G. M. 1996, ApJ 466, 561Google Scholar
Montero-Castaño, M., Herrnstein, R. M., & Ho, P. T. P. 2009, ApJ 695, 1477Google Scholar
Lacy, J. H., Townes, C. H., Geballe, T. R., & Hollenbach, D. J. 1980, ApJ 241, 132Google Scholar
Oka, T., Hasegawa, T., Hayashi, M., Handa, T., & Sakamoto, S. 1998, ApJ 493, 730CrossRefGoogle Scholar
Ponti, G., Terrier, R., Goldwurm, A., Belanger, G., & Trap, G. 2010, ApJ 714, 732Google Scholar
Requena-Torres, M. A., Güsten, R., Weiß, A., et al. 2012, A&A 542, L21Google Scholar
Serabyn, E., Guesten, R., Walmsley, J. E., Wink, J. E., & Zylka, R. 1986, A&A 169, 85Google Scholar
Tielens, A. G. G. M. 2005, The Physics and Chemistry of the Interstellar Medium Tielens, A. G. G. M., ISBN 0521826349, Cambridge, UK: Cambridge University Press, 2005.,CrossRefGoogle Scholar
van der Tak, F. F. S., Belloche, A., Schilke, P., et al. 2006, A&A 454, L99Google Scholar
van der Tak, F. F. S., Black, J. H., Schöier, F. L., Jansen, D. J., & van Dishoeck, E. F. 2007, A&A 468, 627Google Scholar
Viti, S., Collings, M. P., Dever, J. W., McCoustra, M. R. S., & Williams, D. A. 2004, MNRAS 354, 1141Google Scholar
Viti, S., Jimenez-Serra, I., Yates, J. A., et al. 2011, ApJ Lett. 740, L3Google Scholar
Wakelam, V. & Herbst, E. 2008, ApJ 680, 371Google Scholar
Yusef-Zadeh, F., Muno, M., Wardle, M., & Lis, D. C. 2007, ApJ 656, 847CrossRefGoogle Scholar