Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T14:38:02.606Z Has data issue: false hasContentIssue false

Molecules in nearby and primordial supernovae

Published online by Cambridge University Press:  01 February 2008

Isabelle Cherchneff
Affiliation:
Institut für Astronomie, ETH HönggerbergWolfgang-Pauli-Strasse, 16, 8093, Zürich, Switzerland email: [email protected]
Simon Lilly
Affiliation:
Institut für Astronomie, ETH HönggerbergWolfgang-Pauli-Strasse, 16, 8093, Zürich, Switzerland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present new chemical models of supernova (SN) ejecta based on a chemical kinetic approach. We focus on the formation of inorganic and organic molecules including gas phase dust precursors, and consider zero-metallicity progenitor, massive supernovae and nearby core-collapse supernovae such as SN1987A. We find that both types are forming large amounts of molecules in their ejecta at times as early as 200 days after explosion. Upper limits on the dust formation budget are derived. Our results on dust precursors do not agree with existing studies on dust condensation in SN ejecta. We conclude that PMSNe could be the first non-primodial molecule providers in the early universe, ejecting up to 34% of their progenitor mass under molecular form to the pristine, local gas.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Cherchneff, I. & Lilly, S. 2008, ApJ (Letters), submittedGoogle Scholar
Clayton, D. D., Liu, W., & Dalgarno, A. 1999, Science, 283, 1290CrossRefGoogle Scholar
Donn, B. & Nuth, J. A. 1985, ApJ, 288, 187CrossRefGoogle Scholar
Douvion, T, Lagage, P. O., & Pantin, E. 2001, AA, 369, 589CrossRefGoogle Scholar
Kozasa, T., Hasegawa, H., & Nomoto, K. 1989, ApJ, 344, 325CrossRefGoogle Scholar
Kozasa, T., Hasegawa, H. & Nomoto, K. 1991, AA, 249, 474Google Scholar
Lepp, S., Dalgarno, A., & McCray, R. 1990, ApJ, 358, 262CrossRefGoogle Scholar
Liu, W. & Dalgarno, A. 1994, ApJ, 438, 789Google Scholar
Liu, W. & Dalgarno, A. 1995, ApJ, 454, 472CrossRefGoogle Scholar
Lucy, L. B., Danziger, I. J., Gouiffes, C., & Bouchet, P. 1989, in: Tenorio-Tagle, G., Moles, M., & Melnick, J. (eds.), IAU Coll. 120, Structure and Dynamics of the Interstellar Medium (Berlin: Springer-Verlag), p. 164CrossRefGoogle Scholar
Mackey, J., Bromm, V., & Hernquist, L. 2003, ApJ, 586, 1CrossRefGoogle Scholar
Nozawa, T, Kozasa, T., Umeda, H., Maeda, K., & Nomoto, K. 2003, ApJ, 598, 785CrossRefGoogle Scholar
Pinto, P. A. & Woosley, S. E. 1988, Nature, 333, 534CrossRefGoogle Scholar
Roche, P. F., Aitken, D. K., & Smith, C. H. 1991, MNRAS, 252, 39CrossRefGoogle Scholar
Salvaterra, R., Ferrara, A., & Schneider, R. 2004, Nature, 10, 113Google Scholar
Schneider, R., Ferrara, A., Salvaterra, R. 2004, MNRAS, 351, 1379CrossRefGoogle Scholar
Spyromilio, J., Meikle, W. P. S., Learner, R. C. M., & Allen, D. A. 1988, Nature, 334, 327CrossRefGoogle Scholar
Todini, P. & Ferrara, A. 2001, MNRAS, 325, 726CrossRefGoogle Scholar
Umeda, H. & Nomoto, K. 2002, ApJ, 565, 385CrossRefGoogle Scholar
Wooden, D. H., Rank, D. M, Bregman, J. D., Witteborn, F. C., Tielens, A. G. G. M., Cohen, M., Pinto, P. A., & Axelrod, T. S. 1993, ApJS, 88, 477CrossRefGoogle Scholar