Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T10:54:12.530Z Has data issue: false hasContentIssue false

Molecules in Bipolar Outflows

Published online by Cambridge University Press:  21 December 2011

Mario Tafalla
Affiliation:
Observatorio Astronómico Nacional (IGN), Alfonso XII 3, 28014 Madrid, Spain email: [email protected], [email protected]
Rafael Bachiller
Affiliation:
Observatorio Astronómico Nacional (IGN), Alfonso XII 3, 28014 Madrid, Spain email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bipolar outflows constitute some of the best laboratories to study shock chemistry in the interstellar medium. A number of molecular species have their abundance enhanced by several orders of magnitude in the outflow gas, likely as a combined result of dust mantle disruption and high temperature gas chemistry, and therefore become sensitive indicators of the physical changes taking place in the shock. Identifying these species and understanding their chemical behavior is therefore of high interest both to chemical studies and to our understanding of the star-formation process. Here we review some of the recent progress in the study of the molecular composition of bipolar outflows, with emphasis in the tracers most relevant for shock chemistry. As we discuss, there has been rapid progress both in characterizing the molecular composition of certain outflows as well as in modeling the chemical processes likely involved. However, a number of limitations still affect our understanding of outflow chemistry. These include a very limited statistical approach in the observations and a dependence of the models on plane-parallel shocks, which cannot reproduce the observed wing morphology of the lines. We finish our contribution by discussing the chemistry of the so-called extremely high velocity component, which seems different from the rest of the outflow and may originate in the wind from the very vicinity of the protostar.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Arce, H. G., Shepherd, D., Gueth, F., Lee, C.-F., Bachiller, R., Rosen, A., & Beuther, H. 2007, in Protostars and Planets V, (Tucson: Univ. of Arizona Press, Tucson), p. 245Google Scholar
Arce, H. G., Santiago-García, J., Jørgensen, J. K., Tafalla, M., & Bachiller, R. 2008, ApJL, 681, L21CrossRefGoogle Scholar
Bachiller, R., Cernicharo, J., Martín-Pintado, J., Tafalla, M., & Lazareff, B. 1990, A&A, 231, 174Google Scholar
Bachiller, R., Liechti, S., Walmsley, C. M., & Colomer, F. 1995, A&A, 295, L51Google Scholar
Bachiller, R. 1996, ARAA, 34, 111CrossRefGoogle Scholar
Bachiller, R. & Perez Gutierrez, M. 1997, ApJL, 487, L93CrossRefGoogle Scholar
Bachiller, R., Pérez Gutiérrez, M., Kumar, M. S. N., & Tafalla, M. 2001, A&A, 372, 899Google Scholar
Benedettini, M., Viti, S., Codella, C., Bachiller, R., Gueth, F., Beltrán, M. T., Dutrey, A., & Guilloteau, S. 2007, MNRAS 381, 1127CrossRefGoogle Scholar
Bergin, E. A., Neufeld, D. A., & Melnick, G. J. 1998, ApJ, 499, 777CrossRefGoogle Scholar
Bisschop, S. E., Jørgensen, J. K., van Dishoeck, E. F., & de Wachter, E. B. M. 2007, A&A, 465, 913Google Scholar
Bjerkeli, P., et al. 2009, A&A, 507, 1455Google Scholar
Bontemps, S., André, P., Terebey, S., & Cabrit, S. 1996, A&A, 311, 858Google Scholar
Burton, M. G., Brand, P. W. J. L., Geballe, T. R., & Webster, A. S. 1989, MNRAS, 236, 409CrossRefGoogle Scholar
Cazaux, S., Tielens, A. G. G. M., Ceccarelli, C., Castets, A., Wakelam, V., Caux, E., Parise, B., & Teyssier, D. 2003, ApJL, 593, L51CrossRefGoogle Scholar
Cernicharo, J., Bachiller, R., & González-Alfonso, E. 1996, A&A, 305, L5Google Scholar
Codella, C., et al. 2010, A&A, 518, L112Google Scholar
Davis, C. J., Gell, R., Khanzadyan, T., Smith, M. D., & Jenness, T. 2010, A&A, 511, A24Google Scholar
Elitzur, M. & de Jong, T. 1978, ApJ, 67, 323Google Scholar
Faure, A., Crimier, N., Ceccarelli, C., Valiron, P., Wiesenfeld, L., & Dubernet, M. L. 2007, A&A, 472, 1029Google Scholar
Flower, D. R. & Pineau Des Forêts, G. 2010, MNRAS, 406, 1745Google Scholar
Franklin, J., Snell, R. L., Kaufman, M. J., Melnick, G. J., Neufeld, D. A., Hollenbach, D. J., & Bergin, E. A. 2008, ApJ, 674, 1015CrossRefGoogle Scholar
Gautier, T. N. III, Fink, U., Larson, H. P., & Treffers, R. R. 1976, ApJL, 207, L129CrossRefGoogle Scholar
Giannini, T., Nisini, B., & Lorenzetti, D. 2001, ApJ, 555, 40CrossRefGoogle Scholar
Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A., & Tielens, A. G. G. M. 2004, ApJS, 151, 35CrossRefGoogle Scholar
Glassgold, A. E., Mamon, G. A., & Huggins, P. J. 1991, ApJ, 373, 254CrossRefGoogle Scholar
Gusdorf, A., Pineau Des Forêts, G., Cabrit, S., & Flower, D. R. 2008, A&A, 490, 695Google Scholar
Herbst, E. & van Dishoeck, E. F. 2009, ARAA, 47, 427CrossRefGoogle Scholar
Hollenbach, D. & McKee, C. F. 1979, ApJS, 41, 555CrossRefGoogle Scholar
Kaufman, M. J. & Neufeld, D. A. 1996, ApJ, 456, 611CrossRefGoogle Scholar
Kristensen, L. E., van Dishoeck, E. F., Tafalla, M., Bachiller, R., Nisini, B., Liseau, R. & Yıldız, U. A. 2011, A&A, 531, L1Google Scholar
Kwan, J. & Scoville, N. 1976, ApJL, 210, L39CrossRefGoogle Scholar
Liseau, R., et al. 1996, A&A, 315, L181Google Scholar
Maret, S., et al. 2009, ApJ, 698, 1244CrossRefGoogle Scholar
Meier, D. S. & Turner, J. L. 2005, ApJ, 618, 259CrossRefGoogle Scholar
Mikami, H., Umemoto, T., Yamamoto, S., & Saito, S. 1992, ApJL, 392, L87CrossRefGoogle Scholar
Morris, M. 1976, ApJ, 210, 100CrossRefGoogle Scholar
Nisini, B., et al. 1999, A&A, 350, 529Google Scholar
Nisini, B., Codella, C., Giannini, T., Santiago Garcia, J., Richer, J. S., Bachiller, R., & Tafalla, M. 2007, A&A, 462, 163Google Scholar
Nisini, B., Giannini, T., Neufeld, D. A., Yuan, Y., Antoniucci, S., Bergin, E. A., & Melnick, G. J. 2010, ApJ, 724, 69CrossRefGoogle Scholar
Neufeld, D. A., et al. 2006, ApJ, 649, 816CrossRefGoogle Scholar
Neufeld, D. A., et al. 2009, ApJ, 706, 170CrossRefGoogle Scholar
Rodríguez-Fernández, N. J., Tafalla, M., Gueth, F., & Bachiller, R. 2010, A&A, 516, A98Google Scholar
Rosenthal, D., Bertoldi, F., & Drapatz, S. 2000, A&A, 356, 705Google Scholar
Santiago-García, J., Tafalla, M., Johnstone, D., & Bachiller, R. 2009, A&A, 495, 169Google Scholar
Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F., & Black, J. H. 2005, A&A, 432, 369Google Scholar
Snell, R. L., Loren, R. B., & Plambeck, R. L. 1980, ApJL, 239, L17CrossRefGoogle Scholar
Stone, J. M. & Norman, M. L. 1993, ApJ, 413, 210CrossRefGoogle Scholar
Sugimura, M., et al. 2011, PASJ, 63, 459CrossRefGoogle Scholar
Tafalla, M., Myers, P. C., Mardones, D., & Bachiller, R. 2000, A&A, 359, 967Google Scholar
Tafalla, M., Santiago, J., Johnstone, D., & Bachiller, R. 2004, A&A, 423, L21Google Scholar
Tafalla, M., Santiago-García, J., Hacar, A., & Bachiller, R. 2010, A&A, 522, A91Google Scholar
Umemoto, T., Iwata, T., Fukui, Y., Mikami, H., Yamamoto, S., Kameya, O., & Hirano, N. 1992, ApJL, 392, L83CrossRefGoogle Scholar
van Dishoeck, E. F. & Blake, G. A. 1998, ARAA, 36, 317CrossRefGoogle Scholar
van Dishoeck, E. F., et al. 2011, PASP 123, 138CrossRefGoogle Scholar