Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T03:42:50.285Z Has data issue: false hasContentIssue false

Molecular lines studies at redshift greater than 1

Published online by Cambridge University Press:  21 October 2010

Françoise Combes*
Affiliation:
LERMA, Observatoire de Paris, 61 Av. de l'Observatoire, F-75014, Paris email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of CO molecules in the millimetrer domain at high redshift (larger than 1), have provided interesting informations about star formation efficiency, and its evolution with redshift. Due to the difficulty of the detections, selection effects are important. The detection if often due to gravitational amplification. Objects selected by their (far)infrared flux, are in general associated to ULIRGS, mergers with starburst in the nuclear regions. Quasars have been selected as powerful optical sources, and have been found to be associated to starbursts, rich in gas. The gas fraction appears to be much higher at redshift greater than 1. Quasars allow to probe the end of the reionisation period, and the relation between bulge and black hole mass. However these selection bias could have led us to miss some gaseous galaxies, with low-efficiency of star formation, such as the more quiescent objects selected by their BzK colors at z = 1.5 or 2.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bouche, N., Cresci, G., Davies, R. et al. 2007, ApJ 671, 303CrossRefGoogle Scholar
Brown, R. L. & van den Bout, P. A. 1992, ApJ 397, L19CrossRefGoogle Scholar
Chapman, S. C., Neri, R., Bertoldi, F. et al. 2008, ApJ 689, 889Google Scholar
Coppin, K. E. K., Swinbank, A. M., Neri, R. et al. 2007, ApJ 665, 936Google Scholar
Daddi, E., Dannerbauer, H., Elbaz, D. et al. 2008, ApJ 673, L21CrossRefGoogle Scholar
Dannerbauer, H., Daddi, E., Riechers, D. A. et al. 2009, ApJ 698, 178Google Scholar
Fan, X., Strauss, M. A., Schneider, D.P. et al. 2003, AJ 125, 1649CrossRefGoogle Scholar
Gao, Y., & Solomon, P. 2004, ApJ 606, 271Google Scholar
Geach, J. E., Smail, I., Chapman, S. C. et al. 2007, ApJ 655, L9Google Scholar
Geach, J. E., Smail, I., Coppin, K. et al. 2009, MNRAS 395, L62CrossRefGoogle Scholar
Genzel, R., Baker, A. J., Tacconi, L. et al. 2003, ApJ 584, 633CrossRefGoogle Scholar
Hatsukade, B., Iono, D., Motohara, K. et al. 2009, PASP 61, 487Google Scholar
Iono, D., Wilson, C. D., Yun, M. S. et al. 2009, ApJ 695, 1537CrossRefGoogle Scholar
Riechers, D. A., Walter, F., Brewer, B. et al. 2008a, ApJ 686, 851Google Scholar
Riechers, D. A., Walter, F., Carilli, C. et al. 2008b, ApJ 686, L9Google Scholar
Riechers, D. A., Walter, F., Carilli, C. et al. 2009, ApJ 690, 463CrossRefGoogle Scholar
Solomon, P., Radford, S. J. E., & Downes, D. 1992, Nature 356, 318Google Scholar
Tamura, Y., Kohno, K., Nakanishi, K. et al. 2009, Nature 459, 61CrossRefGoogle Scholar
Walter, F., Riechers, D., Cox, P. et al. 2009, Nature 457, 699CrossRefGoogle Scholar
White, R. L., Becker, R. H., Fan, X., & Strauss, M. A. 2003, AJ 126, 1Google Scholar