Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T08:41:16.565Z Has data issue: false hasContentIssue false

The molecular gas in Luminous Infrared Galaxies: a new emergent picture

Published online by Cambridge University Press:  21 March 2013

Padelis P. Papadopoulos
Affiliation:
Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn, Germany, email: [email protected]
Zhi-Yu Zhang
Affiliation:
Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
Axel Weiss
Affiliation:
Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn, Germany, email: [email protected]
Paul van der Werf
Affiliation:
Leiden Observatory, Leiden University, NL-2300 RA Leiden, The Netherlands
Kate Isaak
Affiliation:
Research & Scientific Support, European Space Agency, ESTEC, NL-2201, The Netherlands
Yu Gao
Affiliation:
Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
Manolis Xilouris
Affiliation:
Institute for Astronomy, Astrophysics, Space Applications & Remote Sensing, National Observatory of Athens, P. Penteli, 15236 Athens, Greece
Thomas R. Greve
Affiliation:
Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Results from a large, multi-J CO, 13CO, and HCN line survey of Luminous Infrared Galaxies (LIRGs: LIR≥ 1010 L) in the local Universe (z≤0.1), complemented by CO J=4–3 up to J=13–12 observations from the Herschel Space Observatory (HSO), paints a new picture for the average conditions of the molecular gas of the most luminous of these galaxies with turbulence and/or large cosmic ray (CR) energy densities UCR rather than far-UV/optical photons from star-forming sites as the dominant heating sources. Especially in ULIRGs (LIR>1012 L) the Photon Dominated Regions (PDRs) can encompass at most a few % of their molecular gas mass while the large UCR∼ 103 UCR, Galaxy, and the strong turbulence in these merger/starbursts, can volumetrically heat much of their molecular gas to Tkin∼ (100-200) K, unhindered by the high dust extinctions. Moreover the strong supersonic turbulence in ULIRGs relocates much of their molecular gas at much higher average densities (≥104 cm−3) than in isolated spirals (∼ 102–103 cm−3). This renders low-J CO lines incapable of constraining the properties of the bulk of the molecular gas in ULIRGs, with substantial and systematic underestimates of its mass possible when only such lines are used. Finally a comparative study of multi-J HCN lines and CO SLEDs from J=1–0 up to J=13–12 of NGC 6240 and Arp 193 offers a clear example of two merger/starbursts whose similar low-J CO SLEDs, and LIR/LCO,1−0 and LHCN, 1−0/LCO,1-0 ratios (proxies of the so-called SF efficiency and dense gas mass fraction), yield no indications about their strongly diverging CO SLEDs beyond J=4–3, and ultimately the different physical conditions in their molecular ISM. The much larger sensitivity of ALMA and its excellent site in the Atacama desert now allows the observations necessary to assess the dominant energy sources of the molecular gas and its mass in LIRGs without depending on the low-J CO lines.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Aalto, S., Booth, R. S., Black, J. M., & Johansson, L. E. B. 1995, A&A, 300, 369Google Scholar
Braine, J. & Combes, F. 1992, A&A, 264, 433Google Scholar
Bryant, P. M. & Scoville, N. Z. 1996, ApJ, 457, 678Google Scholar
Dickman, R. L., Snell, R. L. & Schloerb, F. P. 1986, ApJ, 309, 326Google Scholar
Downes, D. & Solomon, P. M. 1998, ApJ, 507, 615Google Scholar
Gao, Y. & Solomon, P. M. 2004, ApJ, 606, 271Google Scholar
Hollenbach, D. & Tielens, A. G. G. M. 1999, Rev. of Mod. Physics, Vol. 71, pg. 173Google Scholar
Mao, R. Q., Schulz, A., Henkel, C., et al. 2010, ApJ, 724, 1336CrossRefGoogle Scholar
Maloney, P. M., & Black, J. H. 1988, ApJ, 325, 389CrossRefGoogle Scholar
Papadopoulos, P. P., Thi, W.-F., & Viti, S. 2002, ApJ, 579, 270Google Scholar
Papadopoulos, P. P. 2007, ApJ, 656, 792Google Scholar
Papadopoulos, P. P., van der Werf, P., Xilouris, E., Isaak, K. G., & Gao, Y. 2012a, ApJ, 751, 10Google Scholar
Papadopoulos, P. P., van der Werf, P., Xilouris, E., Isaak, K. G., Gao, Y., & Muehle, S. 2012b, MNRAS (in press, arXiv:1109.4176)Google Scholar
Sakamoto, S., Hayashi, M., Hasegawa, T., Handa, T. & Oka, T. 1994 ApJ, 425, 641Google Scholar
Sanders, D. B., Mazzarella, J. M., Kim, D.-C., Surace, J. A., & Soifer, B. T. 2003, AJ, 126, 1607CrossRefGoogle Scholar
Solomon, P. M. & Barrett, J. W. 1991, in: Combes, F. & Casoli, F.. (eds.), Dynamics of Galaxies and Their Molecular Cloud Distributions, Proc. IAU Symposium No. 146, p. 235Google Scholar
Solomon, P. M., Downes, D., Radford, S. J. E., & Barrett, J. W. 1997, ApJ, 478, 144CrossRefGoogle Scholar
Soifer, B. T., Sanders, D. B., Madore, B. F., et al. 1987, ApJ, 320, 238Google Scholar
Wolfire, M. G., Tielens, A. G. G. M. & Hollenbach, D. 1990, ApJ, 358, 116Google Scholar
Wolfire, M. G., Hollenbach, D., & Tielens, A. G. G. M. 1993, ApJ, 402, 195Google Scholar
Wolfire, M. G., Hollenbach, D., & McKee, C. F. 2010, ApJ, 716, 1191Google Scholar
Yao, L., Seaquist, E. R., Kuno, N., & Dunne, L. 2003, ApJ, 588, 771CrossRefGoogle Scholar
Young, J. S. & Scoville, N. Z. 1991, ARA&A, 29, 581Google Scholar