Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T05:14:36.189Z Has data issue: false hasContentIssue false

Molecular gas across cosmic time

Published online by Cambridge University Press:  04 June 2020

Georgios E. Magdis*
Affiliation:
Cosmic Dawn Center (DAWN) Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, 2100 Copenhagen, Denmark Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Athens, Greece email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have entered an era where the gas mass estimates of distant galaxies do not rely on a single tracer but rather on an inventory of different and independent methods, much like the case for the determination of the star formation rate (SFR) of the galaxies. This is crucial as the traditional Mgas tracers, i.e. low-J CO transition lines and dust continuum emission are becoming highly uncertain as we move to higher redshifts due to metallicity and CMB effects. Here, we present a homogeneous and statistically significant investigation of the use of atomic carbon as an alternative Mgas tracer (Valentino et al.2018) and provide evidence of optically thick far-IR emission in high−z starbursts that point towards higher dust temperatures and lower dust and gas mass estimates than previously inferred (Cortzen et al.2019, submitted). Finally, we present direct observations of the effect of the CMB on the far-IR SEDs of high-z SBs, manifested by unphyscally large (β = 2.5–3.5) apparent spectral indexes in R-J tail (Jin et al. 2019, submitted).

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Accurso, G., Saintonge, A., Catinella, B., et al. 2017, MNRAS, 470, 4750Google Scholar
Bethermin, M., Daddi, E., Magdis, G., et al. 2015, A&A, 573, A113Google Scholar
Bourne, N., Dunlop, J. S., Simpson, J. M.et al., 2019, MNRAS, 482, 313510.1093/mnras/sty2773CrossRefGoogle Scholar
Carilli, C. L., & Walter, F. 2013, Annual Review of A&A, 51, 1Google Scholar
Cortzen, I., Garrett, J., Magdis, G., et al. 2019, MNRAS, 482, 161810.1093/mnras/sty2777CrossRefGoogle Scholar
da Cunha, E., Groves, B., Walter, F., et al. 2013, ApJ, 766, 13CrossRefGoogle Scholar
Daddi, E., Bournaud, F., Walter, F., et al. 2010, ApJ, 713, 68610.1088/0004-637X/713/1/686CrossRefGoogle Scholar
Daddi, E., Elbaz, D., Walter, F., et al. 2010, ApJ, 714, L11810.1088/2041-8205/714/1/L118CrossRefGoogle Scholar
Gao, Y. & Solomon, P. M., 2004, ApJ, 606, 27110.1086/382999CrossRefGoogle Scholar
Gracia-Carpio, J., Garcia-Burillo & Santiago, P., et al. 2008, A&A, 479, 703Google Scholar
Groves, B., A., Schinnerer, E., Leroy, A., et al. 2015, ApJ, 799, 96CrossRefGoogle Scholar
Hodge, J. A., Swinbank, A. M., Simpson, J. M., et al. 2016, ApJ, 833, 103CrossRefGoogle Scholar
Madden, S. C., Geis, N., Genzel, R., et al. 1993, ApJ, 407, 57910.1086/172539CrossRefGoogle Scholar
Jin, , et al. 2019, ApJ, 887, 15CrossRefGoogle Scholar
Magdis, G., Daddi, E., Elbaz, D., et al. 2011, ApJ, 740, 1510.1088/2041-8205/740/1/L15CrossRefGoogle Scholar
Magdis, G. E., Daddi, E., Bethermin., , et al. 2012, ApJ, 760, 6CrossRefGoogle Scholar
Magdis, G. E., Rigopoulou, D., Daddi, E., et al. 2017, A&A, 603, A93Google Scholar
Papadopoulos, P. P., Thi, W. F., & Viti, S. 2004, MNRAS, 351, 14710.1111/j.1365-2966.2004.07762.xCrossRefGoogle Scholar
Pope, A., Scott, D., Dickinson, M., et al. 2006, MNRAS, 370, 1185CrossRefGoogle Scholar
Sanders, D. B., Scoville, N. Z., & Soifer, B. T., 1991, ApJ, 370, 158CrossRefGoogle Scholar
Sargent, M., Daddi, E., Bethermin, M., et al. 2014, ApJ, 793, 19CrossRefGoogle Scholar
Scoville, N., Lee, N., Vanden Bout, P., et al. 2017, ApJ, 837, 15010.3847/1538-4357/aa61a0CrossRefGoogle Scholar
Simpson, J. M., Smail, I., Swinbank, A. M., et al. 2017, ApJ, 839, 58CrossRefGoogle Scholar
Solomon, P. M., Downes, D., Radford, S. J. E., et al. 1997, 478, 144CrossRefGoogle Scholar
Solomon, P. M., & Vanden Bout, P. A. 2005, ARAA, 43, 67710.1146/annurev.astro.43.051804.102221CrossRefGoogle Scholar
Tacconi, L. J., Genzel, R., Smail, I., et al. 2008, ApJ, 680, 24610.1086/587168CrossRefGoogle Scholar
Tacconi, L. J., Genzel, R., Saintonge, A., et al. 2018, ApJ, 853, 179CrossRefGoogle Scholar
Tan, Q., Daddi, E., Magdis, G., et al. 2014, A&A, 569, A98Google Scholar
Valentino, F., Magdis, G. E., Daddi, E, et al. 2018, ApJ, 869, 27CrossRefGoogle Scholar
Walter, F., Weiß, A., Downes, D., et al. 2011, ApJ, 730, 18CrossRefGoogle Scholar
Weiß, A., Henkel, C., Downes, D., & Walter, F. 2003, A&A, 409, L41Google Scholar
Zanella, A., Daddi, E., Magdis, G., et al. 2018, MNRAS, 481, 1976CrossRefGoogle Scholar