Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:06:13.811Z Has data issue: false hasContentIssue false

Molecular complexity in the interstellar medium

Published online by Cambridge University Press:  12 October 2020

Arnaud Belloche*
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The search for complex organic molecules in the interstellar medium (ISM) has revealed species of ever greater complexity. This search relies on the progress made in the laboratory to characterize their rotational spectra. Our understanding of the processes that lead to molecular complexity in the ISM builds on numerical simulations that use chemical networks fed by laboratory and theoretical studies. The advent of ALMA and NOEMA has opened a new door to explore molecular complexity in the ISM. Their high angular resolution reduces the spectral confusion of star-forming cores and their increased sensitivity allows the detection of low-abundance molecules that could not be probed before. The complexity of the recently-detected molecules manifests itself not only in terms of number of atoms but also in their molecular structure. We discuss these developments and report on ReMoCA, a new spectral line survey performed with ALMA toward the high-mass star-forming region Sgr B2(N).

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Altwegg, K., Balsiger, H., Bar-Nun, A., et al. 2016, Science Advances, 2, e1600285 CrossRefGoogle Scholar
Altwegg, K., Balsiger, H., Berthelier, J. J., et al. 2017, MNRAS, 469, S130 CrossRefGoogle Scholar
Ball, J. A., Gottlieb, C. A., Lilley, A. E., et al. 1970, ApJ, 162, L203 CrossRefGoogle Scholar
Belloche, A., Garrod, R. T., Müller, H. S. P., et al. 2009, A&A, 499, 215 Google Scholar
Belloche, A., Müller, H. S. P., Menten, K. M., et al. 2013, A&A, 559, A47 Google Scholar
Belloche, A., Garrod, R. T., Müller, H. S. P., et al. 2014, Science, 345, 1584 CrossRefGoogle Scholar
Belloche, A., Müller, H. S. P., Garrod, R. T., et al. 2016, A&A, 587, A91 Google Scholar
Belloche, A., Garrod, R. T., Müller, H. S. P., et al. 2020, A&A, 637, C4 Google Scholar
Bonner, W. A., Mayo Greenberg, J., & Rubenstein, E. 1999, Orig. Life Evol. Biosph., 29, 215 CrossRefGoogle Scholar
Botta, O. & Bada, J. L. 2002, Surveys in Geophysics, 23, 411 CrossRefGoogle Scholar
Cernicharo, J., Heras, A. M., Tielens, A. G. G. M., et al. 2001, ApJ, 546, L123 CrossRefGoogle Scholar
Cronin, J. R. & Pizzarello, S. 1983, Advances in Space Research, 3, 5 CrossRefGoogle Scholar
Cunningham, M. R., Jones, P. A., Godfrey, P. D., et al. 2007, MNRAS, 376, 1201 CrossRefGoogle Scholar
Field, F. H. 1964, J. Phys. Chem., 68, 1039 CrossRefGoogle Scholar
Fourré, I., Rosset, L.,Garrod, R. T. 2013, ApJ, 765, 60 Google Scholar
Garrod, R. T., Belloche, A., Müller, H. S. P., et al. 2017, A&A, 601, A48 Google Scholar
Hayatsu, R., et al. 1975, Geochim. Cosmochim. Acta, 39, 471 CrossRefGoogle Scholar
Herbst, E. & van Dishoeck, E. F. 2009, ARA&A, 47, 427 CrossRefGoogle Scholar
Joblin, C. & Cernicharo, J. 2018, Science, 359, 156 CrossRefGoogle Scholar
Jones, P. A., Cunningham, M. R., Godfrey, P. D., et al. 2007, MNRAS, 374, 579 CrossRefGoogle Scholar
Kisiel, Z., Thomas, J., & Medvedev, I. 2014, 69th International Symposium on Molecular Spectroscopy, TA10Google Scholar
Loomis, R. A., Shingledecker, C. N., Langston, G., et al. 2016, MNRAS, 463, 4175 CrossRefGoogle Scholar
McGuire, B. A., Carroll, P. B., Loomis, R. A., et al. 2016, Science, 352, 1449 CrossRefGoogle Scholar
McGuire, B. A., Burkhardt, A. M., Kalenskii, S., et al. 2018, Science, 359, 202 CrossRefGoogle Scholar
McGuire, B. A. 2018, ApJS, 239, 17 CrossRefGoogle Scholar
Møllendal, H., Margulès, L., Belloche, A., et al. 2012, A&A, 538, A51 Google Scholar
Müller, H. S. P., Zingsheim, O., Wehres, N., et al. 2017, J. Phys. Chem. A, 121, 7121 CrossRefGoogle Scholar
Pizzarello, S. & Yarnes, C. T. 2018, Earth and Planetary Science Letters, 496, 198 CrossRefGoogle Scholar
Raunier, S., Chiavassa, T., Duvernay, F., et al. 2004, A&A, 416, 165 Google Scholar
Remijan, A. J., Snyder, L. E., McGuire, B. A., et al. 2014, ApJ, 783, 77 CrossRefGoogle Scholar
Richard, C., Belloche, A., Margulès, L., et al. 2018, J. Mol. Spectrosc., 345, 51.CrossRefGoogle Scholar
Thomas, J., Medvedev, I., & Kisiel, Z. 2014, 69th International Symposium on Molecular Spectroscopy, TA09Google Scholar
Tielens, A. G. G. M. 2008, ARA&A, 46, 289 CrossRefGoogle Scholar
Wehres, N., Hermanns, M., Wilkins, O. H., et al. 2018, A&A, 615, A140 Google Scholar
Wöhler, F. 1828, Annalen der Physik, 88, 253 CrossRefGoogle Scholar
Wilson, R. W., Jefferts, K. B., & Penzias, A. A. 1970, ApJ, 161, L43 CrossRefGoogle Scholar
Zhou, L., Zheng, W., Kaiser, R. I., et al. 2010, ApJ, 718, 1243 CrossRefGoogle Scholar