Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T02:16:50.841Z Has data issue: false hasContentIssue false

Molecular Clouds: Internal Properties, Turbulence, Star Formation and Feedback

Published online by Cambridge University Press:  21 March 2013

Jonathan C. Tan
Affiliation:
Depts. of Astronomy & Physics, University of Florida, Gainesville, FL 32611, USA email: [email protected]
Suzanne N. Shaske
Affiliation:
Dept. of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
Sven Van Loo
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

All stars are born in molecular clouds, and most in giant molecular clouds (GMCs), which thus set the star formation activity of galaxies. We first review their observed properties, including measures of mass surface density, Σ, and thus mass, M. We discuss cloud dynamics, concluding most GMCs are gravitationally bound. Star formation is highly clustered within GMCs, but overall is very inefficient. We compare properties of star-forming clumps with those of young stellar clusters (YSCs). The high central densities of YSCs may result via dynamical evolution of already-formed stars during and after star cluster formation. We discuss theoretical models of GMC evolution, especially addressing how turbulence is maintained, and emphasizing the importance of GMC collisions. We describe how feedback limits total star formation efficiency, ε, in clumps. A turbulent and clumpy medium allows higher ε, permitting formation of bound clusters even when escape speeds are less than the ionized gas sound speed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Ackermann, M.et al. 2011, ApJ, 726, 81Google Scholar
Anders, P., de Grijs, R., Fritze-v. Alvensleben, U., & Bissantz, N. 2004, MNRAS, 347, 17Google Scholar
Andersen, M., Zinnecker, H., Moneti, A.et al. 2009, ApJ, 707, 1347Google Scholar
Barnes, P. J., Yonekura, Y., Fukui, Y.et al. 2011, ApJS 196 12 [B11]Google Scholar
Barnes, P. J., Yonekura, Y., Ryder, S. D.et al. 2010, MNRAS 402 73 [B10]Google Scholar
Battersby, C., Bally, J., Ginsburg, A.et al. 2011, A&A, 535, 128Google Scholar
Bertoldi, F. & McKee, C. F. 1990, ApJ, 354, 529CrossRefGoogle Scholar
Bertoldi, F. & McKee, C. F. 1992, ApJ 395 140 [BM92]CrossRefGoogle Scholar
Blake, G. A., Sutton, E. C., Masson, C. R., & Phillips, T. G. 1987, ApJ, 315, 621Google Scholar
Bolatto, A., Leroy, A. K., Rosolowsky, E., Walter, F., & Blitz, L. 2008, ApJ, 686, 948Google Scholar
Bontemps, S., Motte, F., Csengeri, T., & Schneider, N. 2010, A&A, 524, 18Google Scholar
Butler, M. J. & Tan, J. C. 2009, ApJ 696 484 [BT09]Google Scholar
Butler, M. J. & Tan, J. C. 2012, ApJ 754 5 [BT12]Google Scholar
Crutcher, R. M. 2012, ARA&A, 50, 29Google Scholar
Dale, J. E., Ercolano, B., & Bonnell, I. A. 2012, MNRAS, 424, 377Google Scholar
Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792Google Scholar
Dobbs, C. L. 2008, MNRAS, 391, 844CrossRefGoogle Scholar
Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium, Princeton Univ. Press.CrossRefGoogle Scholar
Evans, N. J. & II, 1999, ARA&A, 37, 311Google Scholar
Fall, S. M., Krumholz, M. R., & Matzner, C. D. 2010, ApJ, 710, L142Google Scholar
Figer, D. F., MacKenty, J. W., & Robberto, M. 2006, ApJ, 643, 1166Google Scholar
Fontani, F., Giannetti, A., Beltrán, M. T.et al. 2012, MNRAS, 423, 2342CrossRefGoogle Scholar
Foster, J. B., Stead, J. J., Benjamin, R. A., Hoare, M. G., & Jackson, J. M. 2012, ApJ, 751, 157CrossRefGoogle Scholar
Gammie, C. F., Ostriker, J. P., & Jog, C. J. 1991, ApJ 378 565 [G91]Google Scholar
Ginsburg, A., Bressert, E., Bally, J., & Battersby, C. 2012, ApJ 758 L29 [G12]Google Scholar
Goldbaum, N. J., Krumholz, M. R., Matzner, C. D., & McKee, C. F. 2011, ApJ, 738, 101Google Scholar
Goodman, A. A., Pineda, J. E., & Schnee, S. L. 2009, ApJ, 692, 91Google Scholar
Grenier, I. A., Casandjian, J.-M., & Terrier, R. 2005, Science, 307, 1292CrossRefGoogle Scholar
Gritschneder, M., Burkert, A., Naab, T., & Walch, S. 2010, ApJ, 723, 971Google Scholar
Harayama, Y., Eisenhauer, F., & Martins, F. 2008, ApJ, 675, 1319Google Scholar
Harfst, S., Portegies Zwart, S., & Stolte, A. 2010, MNRAS, 409, 628Google Scholar
Heitsch, F., Burkert, A., Hartmann, L. W., Slyz, A. D., & Devriendt, J. 2005, ApJL, 633, L113Google Scholar
Hénault-Brunet, V., Evans, C. J., Sana, H.et al. 2012, A&A, 546, A73Google Scholar
Henney, W. J., Arthur, S. J., de Colle, F., & Mellema, G. 2009, MNRAS, 398, 157Google Scholar
Hernandez, A. K. & Tan, J. C. 2011, ApJ, 730, 44Google Scholar
Hernandez, A. K., Tan, J. C., Caselli, P.et al. 2011, ApJ, 738, 11Google Scholar
Hernandez, A. K., Tan, J. C., Kainulainen, J.et al. 2012, ApJ, 756, L13CrossRefGoogle Scholar
Heyer, M. H., Carpenter, J. M., & Snell, R. L. 2001, ApJ, 551, 852CrossRefGoogle Scholar
Heyer, M. H., Krawczyk, C., Duval, J., & Jackson, J. M. 2009, ApJ 699 1092 [H09]Google Scholar
Hillenbrand, L. A. & Hartmann, L. W. 1998, ApJ, 492, 540CrossRefGoogle Scholar
Hollenbach, D. J. & Tielens, A. G. G. M. 1999, Rev. of Modern Physics, 71, 173Google Scholar
Hunter, D. A., Shaya, E. J., Scowen, P.et al. 1995, ApJ, 444, 758Google Scholar
Hußmann, B., Stolte, A., Brandner, W.et al. 2012, A&A, 540, A57Google Scholar
Imara, N., Bigiel, F., & Blitz, L. 2011, ApJ, 732, 79Google Scholar
Imara, N. & Blitz, L. 2011, ApJ, 732, 78Google Scholar
Jackson, J. M., Finn, S. C., Chambers, E. T., Rathborne, J. M., & Simon, R. 2010, ApJ, 719, L185Google Scholar
Kainulainen, J., Alves, J., Beuther, H., Henning, T., & Schuller, F. 2011, A&A, 536, 48Google Scholar
Kainulainen, J. & Tan, J. C. 2012, A&A, in press (arXiv1210.8130) [KT12]Google Scholar
Krumholz, M. R. & McKee, C. F. 2005, ApJ, 630, 250Google Scholar
Krumholz, M. R. & Tan, J. C. 2007, ApJ, 654, 304CrossRefGoogle Scholar
Krumholz, M. R. & Thompson, T. A. 2012, ApJ, in press (arXiv:1203.2926)Google Scholar
Koda, J., Sawada, T., Hasegawa, T., & Scoville, N. Z. 2006, ApJ, 638, 191Google Scholar
Lacy, J. H., Knacke, R., Geballe, T. R., & Tokunaga, A. T. 1994, ApJ, 428, L69CrossRefGoogle Scholar
Lada, C. J., Alves, J. F., & Lombardi, M. 2007, Protostars and Planets V, Reipurth, B., Jewitt, D., and Keil, K. (eds.), University of Arizona Press, Tucson, p.3Google Scholar
Lada, C. J., Lombardi, M., & Alves, J. F. 2010, ApJ, 724, 687Google Scholar
Langer, W. D. & Penzias, A. A. 1990, ApJ, 357, 477Google Scholar
Larsen, S. S., Origlia, L., Brodi, J., & Gallagher, J. S. 2008, MNRAS, 383, 263Google Scholar
Leroy, A. K., Bolatto, A., Gordon, K.et al. 2011, ApJ, 737, 12Google Scholar
Longmore, S. N., Rathborne, J., Bastian, N.et al. 2012, ApJ 746 117 [L12]Google Scholar
Mac Low, M.-M., Klessen, R. S., Burkert, A., & Smith, M. D. 1998, PRL, 80, 2754Google Scholar
McCrady, N. & Graham, J. R. 2007, ApJ, 663, 844Google Scholar
McKee, C. F. 1989, ApJ, 345, 782Google Scholar
McKee, C. F. & Ostriker, E. C. 2007, AR A&A, 45, 565 [MO07]Google Scholar
McKee, C. F. & Tan, J. C. 2003, ApJ 585 850 [MT03]CrossRefGoogle Scholar
Mengel, S. & Tacconi-Garman, L. E. 2007, A&A, 466, 151Google Scholar
Milam, S. N., Savage, C., Brewster, M. A., & Ziurys, L. M. 2005, ApJ, 634, 1126Google Scholar
Mueller, K. E., Shirley, Y. L.; Evans, N. J., & II, Jacobson, H. R. 2002, ApJS 143 469 [M02]Google Scholar
Ossenkopf, V. & Henning, Th. 1994, A&A 291 943 [OH94]Google Scholar
Peretto, N. & Fuller, G. A. 2009, A&A, 505, 405Google Scholar
Pineda, J. E., Caselli, P., & Goodman, A. A. 2008, ApJ, 679, 481CrossRefGoogle Scholar
Pittard, J. M., Hartquist, T. W., & Falle, S. A. E. G. 2010, MNRAS, 405, 821Google Scholar
Plume, R., Jaffe, D., Evans, N., Martin-Pintado, J., & Gomez-Gonzalez, J. 1997, ApJ, 476, 730Google Scholar
Portegies-Zwart, S. F., McMillam, S. L. W., & Gieles, M. 2010, AR A&A, 48, 431 [PZMG10]Google Scholar
Reid, M., Menten, K. M., Zheng, X. W.et al. 2009, ApJ, 700, 137Google Scholar
Roman-Duval, J., Jackson, J. M., Heyer, M., et al. 2010, ApJ 723 492 [RD10]Google Scholar
Sabbi, E. Sirianna, M., Nota, A. et al. 2008, AJ, 135, 173Google Scholar
Santangelo, G., Testi, L., Gregorini, L.et al. 2009, A&A 501 495 [S09]Google Scholar
Solomon, P. M., Rivolo, A. R., Barrett, J., & Yahil, A. 1987, ApJ 319 730 [S87]CrossRefGoogle Scholar
Stone, J. M., Ostriker, E. C., & Gammie, C. F. 1998, ApJL, 508, L99Google Scholar
Strong, A. W. & Mattox, J. R. 1996, A&A, 308, L21Google Scholar
Tan, J. C. 2000, ApJ, 536, 173Google Scholar
Tan, J. C., Krumholz, M. R., & McKee, C. F. 2006, ApJ, 641, L121Google Scholar
Tan, J. C. & McKee, C. F. 2001, Starburst Galaxies: Near & Far, p188 (arXiv/0012005) [TM01]Google Scholar
Tan, J. C. & McKee, C. F. 2004, The Formation and Evolution of Young Massive Clusters, ASP Conf. Ser. 322, 263 (arXiv/0403498)Google Scholar
Tasker, E. J. & Tan, J. C. 2009, ApJ 700 358 [TT09]Google Scholar
Turner, J. L. & Beck, S. C. 2004, ApJ, 602, L85Google Scholar
van Dishoeck, E. F. & Black, J. H. 1988, ApJ, 334, 771CrossRefGoogle Scholar
Van Loo, S., Butler, M. J., & Tan, J. C. 2012, ApJ, submittedGoogle Scholar
Vázquez-Semadeni, E., Banerjee, R, Gómez, G. C.et al. 2011, MNRAS, 414, 2511Google Scholar
Williams, J. P., Blitz, L., & Mckee, C. F. 2000, Protostars and Planets IV, Mannings, V., Boss, A.P., Russell, S. S. (eds.), Univ. of Arizona Press, Tucson, p. 97Google Scholar
Williams, J. P. & McKee, C. F. 1997, ApJ, 476, 166Google Scholar
Wolfire, M. G., Hollenbach, D., & McKee, C. F. 2010, ApJ, 716, 1191CrossRefGoogle Scholar
Wolfire, M. G., McKee, C. F., Hollenbach, D., & Tielens, A. G. G. M. 2003, ApJ, 587, 278CrossRefGoogle Scholar
Zhang, Y. & Tan, J. C. 2011, ApJ, 733, 55Google Scholar
Zuckerman, B. & Evans, N. J. II 1974, ApJ, 192, L149Google Scholar