Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T20:56:32.997Z Has data issue: false hasContentIssue false

Modes of star formation from Herschel

Published online by Cambridge University Press:  21 March 2013

L. Testi
Affiliation:
ESO, Karl Schwarzschild srt. 2, D-85748 Garching, Germany, email: [email protected] INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy
E. Bressert
Affiliation:
ESO, Karl Schwarzschild srt. 2, D-85748 Garching, Germany, email: [email protected] School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
S. Longmore
Affiliation:
ESO, Karl Schwarzschild srt. 2, D-85748 Garching, Germany, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We summarize some of the results obtained from Herschel surveys of nearby star forming regions and the Galactic plane. We show that in the nearby star forming regions the starless core spatial surface density distribution is very similar to that of the young stellar objects. This, taken together with the similarity between the core mass function and the initial mass function for stars and the relationship between the amount of dense gas and star formation rate, suggest that the cloud fragmentation process defines the global outcome of star formation. This “simple” view of star formation may not hold on all scales. In particular dynamical interactions are expected to become important at the conditions required to form young massive clusters. We describe the successes of a simple criterion to identify young massive cluster precursors in our Galaxy based on (sub-)millimeter wide area surveys. We further show that in the location of our Galaxy where the best candidate for a precursor of a young massive cluster is found, the “simple” scaling relationship between dense gas and star formation rate appear to break down. We suggest that in regions where the conditions approach those of the central molecular zone of our Galaxy it may be necessary to revise the scaling laws for star formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

André, Ph., Menshchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102Google Scholar
Bressert, E., Bastian, N., Gutermuth, R., et al. 2010, MNRAS, 409, L54Google Scholar
Bressert, E., Ginsburg, A., Bally, J., et al. 2012, ApJL, in pressGoogle Scholar
Bressert, E., Testi, L., Facchini, A., et al. 2012, A&A, submittedGoogle Scholar
Evans, N. J., Dunham, M. M., Jrgensen, J. K., et al. 2009, ApJS, 181, 321CrossRefGoogle Scholar
Ginsburg, A., Bressert, E., Bally, J., Battersby, C., et al. 2012, ApJ, in pressGoogle Scholar
Herrera, C. N., Boulanger, F., Nesvadba, N. P. H., & Falgarone, E. 2012, A&A, 538, L9Google Scholar
Koenig, X. P., Leisawitz, D. T., Benford, D. J., et al. 2012, ApJ, 744, 130Google Scholar
Könyves, V., André, Ph., Men'shchikov, A., et al. 2010, A&A, 518, L106Google Scholar
Krumholz, M. R., Dekel, A., & McKee, C. F. 2012, ApJ, 745, 69Google Scholar
Lada, C. J., Forbrich, J., Lombardi, M., & Alves, J. F. 2012, ApJ, 745, 190Google Scholar
Longmore, S. N., Bally, J., Testi, L., et al. 2012, MNRAS, arXiv:1208.4256Google Scholar
Longmore, S. N., Rathborne, J., Bastian, N., et al. 2012, ApJ, 746, 117Google Scholar
Molinari, S., Swinyard, B., Bally, J., et al. 2012, A&A, 518, L100Google Scholar
Motte, F., André, Ph., & Neri, R. 1998, A&A, 336, 150Google Scholar
Portegies Zwart, S. F., McMillan, S. L. W., & Gieles, M. 2010, ARA&A, 48, 431Google Scholar
Rathborne, J. M., Longmore, S. N., Jackson, J. M., et al. 2012, ApJ, submittedGoogle Scholar
Smith, R. J., Longmore, S. N., & Bonnell, I. 2009, MNRAS, 400, 1775Google Scholar
Testi, L. & Sargent, A. I. 1998, ApJ, 508, L91CrossRefGoogle Scholar
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868Google Scholar