Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T07:47:19.893Z Has data issue: false hasContentIssue false

Models for galaxy and massive black hole formation and early evolution

Published online by Cambridge University Press:  29 March 2021

Rainer Weinberger*
Affiliation:
Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, MS-51, Cambridge, MA 02138, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Models for massive black holes are a key ingredient for modern cosmological simulations of galaxy formation. The necessity of efficient AGN feedback in these simulations makes it essential to model the formation, growth and evolution of massive black holes, and parameterize these complex processes in a simplified fashion. While the exact formation mechanism is secondary for most galaxy formation purposes, accretion modeling turns out to be crucial. It can be informed by the properties of the high redshift quasars, accreting close to their Eddington limit, by the quasar luminosity function at peak activity and by low-redshift scaling relations. The need for halo-wide feedback implies a feedback-induced reduction of the accretion rate towards low redshift, amplifying the cosmological trend towards lower accretion rates at low redshift.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Anglés-Alcázar, D., Özel, F., & Davé, R. 2013, ApJ, 770, 5 10.1088/0004-637X/770/1/5CrossRefGoogle Scholar
Bañados, E., Venemans, B. P., Mazzucchelli, C., et al. 2018, Nature, 553, 473 10.1038/nature25180CrossRefGoogle Scholar
Beckmann, R. S., Devriendt, J., Slyz, A., et al. 2017, MNRAS, 472, 949 10.1093/mnras/stx1831CrossRefGoogle Scholar
Begelman, M. C. & Rees, M. J. 1978, MNRAS, 185, 847 10.1093/mnras/185.4.847CrossRefGoogle Scholar
Bower, R. G., Benson, A. J., Malbon, R., et al. 2006, MNRAS, 370, 645 10.1111/j.1365-2966.2006.10519.xCrossRefGoogle Scholar
Bower, R. G., Schaye, J., Frenk, C. S., et al. 2017, MNRAS, 465, 32 10.1093/mnras/stw2735CrossRefGoogle Scholar
Bromm, V. & Loeb, A. 2003, ApJ, 596, 34 10.1086/377529CrossRefGoogle Scholar
Bustamante, S. & Springel, V. 2019, MNRAS, 490, 4133 10.1093/mnras/stz2836CrossRefGoogle Scholar
Carr, B. J., Bond, J. R., & Arnett, W. D. 1984, ApJ, 277, 445 10.1086/161713CrossRefGoogle Scholar
Cielo, S., Bieri, R., Volonteri, M., et al. 2018, MNRAS, 477, 1336 10.1093/mnras/sty708CrossRefGoogle Scholar
Crain, R. A., Schaye, J., Bower, R. G., et al. 2015, MNRAS, 450, 1937 10.1093/mnras/stv725CrossRefGoogle Scholar
Dalla Vecchia, C. & Schaye, J. 2008, MNRAS, 387, 1431 10.1111/j.1365-2966.2008.13322.xCrossRefGoogle Scholar
Davé, R., Anglés-Alcázar, D., Narayanan, D., et al. 2019, MNRAS, 486, 2827 10.1093/mnras/stz937CrossRefGoogle Scholar
Devecchi, B. & Volonteri, M. 2009, ApJ, 694, 302 10.1088/0004-637X/694/1/302CrossRefGoogle Scholar
Di Matteo, T., Croft, R. A. C., Feng, Y., et al. 2017, MNRAS, 467, 4243 10.1093/mnras/stx319CrossRefGoogle Scholar
Dubois, Y., Devriendt, J., Slyz, A., et al. 2012, MNRAS, 420, 2662 10.1111/j.1365-2966.2011.20236.xCrossRefGoogle Scholar
Fabian, A. C. 2012, ARAA, 50, 455 10.1146/annurev-astro-081811-125521CrossRefGoogle Scholar
Khandai, N., Di Matteo, T., Croft, R., et al. 2015, MNRAS, 450, 1349 10.1093/mnras/stv627CrossRefGoogle Scholar
Nelson, D., Pillepich, A., Springel, V., et al. 2018, MNRAS, 475, 624 10.1093/mnras/stx3040CrossRefGoogle Scholar
Oppenheimer, B. D., Bogdán, Á., Crain, R. A., et al. 2020, ApJL, 893, L24 10.3847/2041-8213/ab846fCrossRefGoogle Scholar
Pillepich, A., Springel, V., Nelson, D., et al. 2018, MNRAS, 473, 4077 10.1093/mnras/stx2656CrossRefGoogle Scholar
Rees, M. J. 1984, ARAA, 22, 471 10.1146/annurev.aa.22.090184.002351CrossRefGoogle Scholar
Sijacki, D., Springel, V., Di Matteo, T., et al. 2007, MNRAS, 380, 877 10.1111/j.1365-2966.2007.12153.xCrossRefGoogle Scholar
Smidt, J., Whalen, D. J., Johnson, J. L., et al. 2018, ApJ, 865, 126 10.3847/1538-4357/aad7b8CrossRefGoogle Scholar
Smith, A., Bromm, V., & Loeb, A. 2017, Astronomy and Geophysics, 58, 3.2210.1093/astrogeo/atx099CrossRefGoogle Scholar
Somerville, R. S., & Davé, R. 2015, ARAA, 53, 51 10.1146/annurev-astro-082812-140951CrossRefGoogle Scholar
Springel, V. & Hernquist, L. 2003, MNRAS, 339, 289 10.1046/j.1365-8711.2003.06206.xCrossRefGoogle Scholar
Trayford, J. W., Theuns, T., Bower, R. G., et al. 2016, MNRAS, 460, 3925 10.1093/mnras/stw1230CrossRefGoogle Scholar
Tremmel, M., Karcher, M., Governato, F., et al. 2017, MNRAS, 470, 1121 10.1093/mnras/stx1160CrossRefGoogle Scholar
Truong, N., Pillepich, A., Werner, N., et al. 2020, MNRAS, 494, 549 10.1093/mnras/staa685CrossRefGoogle Scholar
van de Voort, F., Schaye, J., Booth, C. M., et al. 2011, MNRAS, 415, 2782 10.1111/j.1365-2966.2011.18896.xCrossRefGoogle Scholar
Vogelsberger, M., Genel, S., Sijacki, D., et al. 2013, MNRAS, 436, 3031 10.1093/mnras/stt1789CrossRefGoogle Scholar
Vogelsberger, M., Marinacci, F., Torrey, P., et al. 2020, Nature Reviews Physics, 2, 42 10.1038/s42254-019-0127-2CrossRefGoogle Scholar
Volonteri, M. 2010, A&ARv, 18, 279 Google Scholar
Weinberger, R., Springel, V., Hernquist, L., et al. 2017, MNRAS, 465, 3291 10.1093/mnras/stw2944CrossRefGoogle Scholar
Weinberger, R., Springel, V., Pakmor, R., et al. 2018, MNRAS, 479, 4056 10.1093/mnras/sty1733CrossRefGoogle Scholar