Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T22:45:52.521Z Has data issue: false hasContentIssue false

Modelling astrophysical fluids with particles

Published online by Cambridge University Press:  20 January 2023

Stephan Rosswog*
Affiliation:
Astronomy and Oskar Klein Centre, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Computational fluid dynamics is a crucial tool to theoretically explore the cosmos. In the last decade, we have seen a substantial methodological diversification with a number of cross-fertilizations between originally different methods. Here we focus on recent developments related to the Smoothed Particle Hydrodynamics (SPH) method. We briefly summarize recent technical improvements in the SPH-approach itself, including smoothing kernels, gradient calculations and dissipation steering. These elements have been implemented in the Newtonian high-accuracy SPH code MAGMA2 and we demonstrate its performance in a number of challenging benchmark tests. Taking it one step further, we have used these new ingredients also in the first particle-based, general-relativistic fluid dynamics code that solves the full set of Einstein equations, SPHINCS_BSSN. We present the basic ideas and equations and demonstrate the code performance at examples of relativistic neutron stars that are evolved self-consistently together with the spacetime.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott et al. 2017, ApJL, 848, L12 CrossRefGoogle Scholar
Abel, T. 2011, MNRAS, 413, 271 CrossRefGoogle Scholar
Alcubierre, M. 2008, Introduction to 3+1 Numerical Relativity, Oxford University Press 10.1093/acprof:oso/9780199205677.001.0001CrossRefGoogle Scholar
Ayache, E., vanEerten, H.J. & Eardly, R., 2022, MNRAS, 519, 1315 Google Scholar
Barack et al., 2019, Classical and Quantum Gravity, 36, 143001 CrossRefGoogle Scholar
Baumgarte, T. & Shapiro, S.L., 1999, Phys. rev. D, 59, 024007 10.1103/PhysRevD.59.024007CrossRefGoogle Scholar
Baumgarte, T. & Shapiro, S.L., 2010, Numerical Relativity: Solving Einstein’s Equations on the Computer, Cambridge University Press CrossRefGoogle Scholar
Baumgarte, T. & Shapiro, S.L., 2021, Numerical Relativity: Starting from Scratch, Cambridge University Press 10.1017/9781108933445CrossRefGoogle Scholar
Ben Moussa, B., Lanson, N. & Vila, J.P., 1999, International Series of Numerical Mathematics, 29, 31 Google Scholar
Bernuzzi, S. & Hilditch, D., 2010, Phys. Rev. D, 81, 084003 10.1103/PhysRevD.81.084003CrossRefGoogle Scholar
Cha, S.H. & Witworth, A.P., 2003 MNRAS, 340, 7310.1046/j.1365-8711.2003.06266.xCrossRefGoogle Scholar
Cha, S.H., Inutsuka, S.I. & Nayakshin, S., 2010 MNRAS, 403, 1165 CrossRefGoogle Scholar
Cottet, G.H. & Koumoutsakos, P.D., 2000, Vortex Methods, Cambridge University Press, Cambridge CrossRefGoogle Scholar
Cordero-Carrillon, I., et al., 2009, Phys. Rev. D, 79, 024017 10.1103/PhysRevD.79.024017CrossRefGoogle Scholar
Cullen, L. & Dehnen, W., 2010, MNRAS, 408, 669 CrossRefGoogle Scholar
Dehnen, W. & Aly, H., 2012, MNRAS, 425, 1068 10.1111/j.1365-2966.2012.21439.xCrossRefGoogle Scholar
Diener, Rosswog & Torsello, , 2022, eprint arXiv:2203.06478Google Scholar
Duffel, P. & MacFadyen, A., 2011, ApJS, 197, 15 10.1088/0067-0049/197/2/15CrossRefGoogle Scholar
Duffel, P., 2016, ApJS, 226, 2 CrossRefGoogle Scholar
Font, T. et al., 2002, Phys. Rev. D, 65, 084024 CrossRefGoogle Scholar
Frontiere, N., Raskin, C & Owen, J.M., 2017, Journal of Computational Physics, 332, 160 CrossRefGoogle Scholar
Gaburov, E. & Nitadori, K., 2011, MNRAS, 414, 129 10.1111/j.1365-2966.2011.18313.xCrossRefGoogle Scholar
Gafton, E. & Rosswog, S., 2011, MNRAS, 418, 770 10.1111/j.1365-2966.2011.19528.xCrossRefGoogle Scholar
Garcia-Senz, D., Cabezon, R. & Escartin, J.A., 2012, A & A, 538, 9 10.1051/0004-6361/201117939CrossRefGoogle Scholar
Hernquist, L., 1993, ApJ, 404, 71710.1086/172325CrossRefGoogle Scholar
Hietel, D., Steiner, K. & Struckmeier, J., 2000, Mathematical Models and Methods in Applied Sciences, 10, 1363 CrossRefGoogle Scholar
Hockney, R.W. & Eastwood, J.W., 1988, Computer Simulation Using Particles, McGraw-Hill, New York 10.1201/9781439822050CrossRefGoogle Scholar
Hopkins, P., 2015, MNRAS, 450, 53 10.1093/mnras/stv195CrossRefGoogle Scholar
Hubber, P., Rosotti, G.P. & Booth, R.A., 2018, MNRAS, 473, 1603 10.1093/mnras/stx2405CrossRefGoogle Scholar
Inutsuka, S.I., 2002 Journal of Computational Physics, 179, 238 Google Scholar
Junk, M., 2003, In: Griebel M., Schweitzer M.A. (eds) Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 26. Springer, Berlin, Heidelberg, 26, 223Google Scholar
Kalogera et al., 2022, The Next Generation Global Gravitational Wave Observatory: The Science Book, arXiv:2111.06990Google Scholar
Kurganov, A. & Tadmor, E., 2002 Numerical Methods for Partial Differential Equations, 18, 584 10.1002/num.10025CrossRefGoogle Scholar
Lax, P. & Liu, X.D., 1998 SIAM J. Sci. Comput., 19, 319 10.1137/S1064827595291819CrossRefGoogle Scholar
Liska, R. & Wendroff, B., 2003 SIAM J. Sci. Comput., 25, 995 CrossRefGoogle Scholar
Mandel, I., & Levin, Y., 2015, ApJL, 805, L4 10.1088/2041-8205/805/1/L4CrossRefGoogle Scholar
Marronetti et al., 2008, Phys. Rev. D, 77, 064010 10.1103/PhysRevD.77.064010CrossRefGoogle Scholar
Monaghan, J.J., 1992, Ann. Rev. Astron. Astrophys, 30, 543 10.1146/annurev.aa.30.090192.002551CrossRefGoogle Scholar
Monaghan, J.J., 1997, Journal of Computational Physics, 136, 298 CrossRefGoogle Scholar
Monaghan, J.J. & Price, D.J., 2001, MNRAS, 328, 381 CrossRefGoogle Scholar
Monaghan, J.J., 2002, MNRAS, 335, 843 CrossRefGoogle Scholar
Monaghan, J.J., 2005, Reports on Progress in Physics, 68, 1703 CrossRefGoogle Scholar
Morris, J. & Monaghan, J.J., 1997, Journal of Computational Physics, 136, 41 10.1006/jcph.1997.5690CrossRefGoogle Scholar
Nakamura, T., Oohara, K, & Kojima, Y., 1987, Prog. Theor. Phys. Suppl., 90, 1 10.1143/PTPS.90.1CrossRefGoogle Scholar
Price, D.J. & Monaghan, J.J., 2007, MNRAS, 374, 1347 10.1111/j.1365-2966.2006.11241.xCrossRefGoogle Scholar
Monaghan, J.J. & Gingold, R.A., 1983, Journal of Computational Physics, 149, 135 Google Scholar
Puri, K. & Ramachandran, P., 2014, Journal of Computational Physics, 270, 432 10.1016/j.jcp.2014.03.055CrossRefGoogle Scholar
Rezzolla, L. & Zanotti, O., 2013, Relativistic Hydrodynamics, Oxford University Press 10.1093/acprof:oso/9780198528906.001.0001CrossRefGoogle Scholar
Rosswog, S., et al. 2000, A&A, 360, 171 Google Scholar
Rosswog, S., 2009, New Astronomy Reviews, 53, 78 CrossRefGoogle Scholar
Rosswog, S., 2010a, Classical and Quantum Gravity, 27, 114108 10.1088/0264-9381/27/11/114108CrossRefGoogle Scholar
Rosswog, S., 2010b, Journal of Computational Physics, 229, 8591 10.1016/j.jcp.2010.08.002CrossRefGoogle Scholar
Rosswog, S., 2015a, International Journal of Modern Physics D, 24, 1530012 10.1142/S0218271815300128CrossRefGoogle Scholar
Rosswog, S., 2015b, MNRAS, 448, 3628 10.1093/mnras/stv225CrossRefGoogle Scholar
Rosswog, S., 2015c, Living Reviews of Computational Astrophysics, 1, 1 CrossRefGoogle Scholar
Rosswog, S., 2020a, MNRAS, 498, 4230 CrossRefGoogle Scholar
Rosswog, S., 2020b, ApJ, 898, 60 10.3847/1538-4357/ab9a2eCrossRefGoogle Scholar
Rosswog, S. & Diener, P., 2021, Classical and Quantum Gravity, 38, 115002 CrossRefGoogle Scholar
Saitoh, T.R. & Makino, J., 2013, ApJ, 768, 44 10.1088/0004-637X/768/1/44CrossRefGoogle Scholar
Schaback, R. & Wendland, H., 2006, Acta Numerica, 15, 543 10.1017/S0962492906270016CrossRefGoogle Scholar
Schulz-Rinne, C.W., 1993, SIAM Journal of Mathematical Analysis, 24, 76 10.1137/0524006CrossRefGoogle Scholar
Sedov, L.I., 1959, Proceedings of the Royal Society of London Series A, New York: Academic Press, 1959Google Scholar
Shibata, M. & Nakamura, T. 1995, Phys. Rev. D, 52, 5428 10.1103/PhysRevD.52.5428CrossRefGoogle Scholar
Shibata, M., 2016, Numerical Relativity, World Scientific CrossRefGoogle Scholar
Springel, V., & Hernquist, L., 2002, MNRAS, 333, 649 10.1046/j.1365-8711.2002.05445.xCrossRefGoogle Scholar
Springel, V., 2010, MNRAS, 401, 791 CrossRefGoogle Scholar
Taylor, G., 1950, Proceedings of the Royal Society of London Series A, 201, 159 CrossRefGoogle Scholar
Tichy, W. & Marronetti, P., 2007, Phys. Rev. D, 76, 061502 CrossRefGoogle Scholar
Timmes, F. & Swesty, D., 2000, ApJS, 126, 501 CrossRefGoogle Scholar
van Leer, B., 1974, Journal of Computational Physics, 14, 361 CrossRefGoogle Scholar
Vila, J.P., 1999, Mathematical Models and Methods in Applied Science, 02, 161 CrossRefGoogle Scholar
von Neumann, J. & Richtmyer, R.D. 1950, Journal of Applied Physics, 21, 232 CrossRefGoogle Scholar
Wendland, H., 1995, Advances in Computational Mathematics, 4, 389 CrossRefGoogle Scholar