Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T06:23:14.828Z Has data issue: false hasContentIssue false

Modeling the Structure of the Windy Torus in Quasars

Published online by Cambridge University Press:  25 July 2014

Sarah C. Gallagher
Affiliation:
University of Western Ontario, London, ONCanada email: [email protected]
Mathew M. Abado
Affiliation:
University of Western Ontario, London, ONCanada email: [email protected]
John E. Everett
Affiliation:
Northwestern University, Evanston, IL, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mass ejection in the form of winds or jets appears to be as fundamental to quasar activity as accretion. A convincing argument for radiation pressure driving this ionized outflow can be made within the dust sublimation radius. Beyond, radiation pressure is even more ubiquitous, as high energy photons from the central engine can now push on dust grains. This physics underlies the dusty-wind model for the putative obscuring torus. Specifically, the dusty wind in our model is first launched from the outer accretion disk as a magneto-centrifugal wind and then accelerated and shaped by radiation pressure from the central continuum. Such a wind can plausibly account for both the necessary obscuring medium to explain the observed ratio of broad-to-narrow-line quasars and the mid-infrared emission commonly seen in quasar spectral energy distributions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bentz, M. C., Peterson, B. M., Netzer, H., Pogge, R. W., & Vestergaard, M., 2009, ApJ, 697, 160Google Scholar
Blandford, R. D. & Payne, D. G., 1982, MNRAS, 199, 883Google Scholar
Draine, B. T. & Li, A., 2007, ApJ, 657, 810Google Scholar
Everett, J. E. 2005, ApJ, 631, 689Google Scholar
Ferland, G. J., et al. 1998, PASP, 110, 761CrossRefGoogle Scholar
Hao, L., et al. 2005, AJ, 129, 1795Google Scholar
Ho, L. C., Filippenko, A. V., Sargent, W. L. W., & Peng, C. Y., 1997, ApJS, 112, 391Google Scholar
Kaspi, S., Smith, P. S., Netzer, H., Maoz, D., Jannuzi, B. T., & Giveon, U., 2000, ApJ, 533, 631Google Scholar
Keating, S. K., Everett, J. E., Gallagher, S. C., & Deo, R. P., 2012, ApJ, 749, 32Google Scholar
Königl, A. & Kartje, J. F., 1994, ApJ, 434, 446Google Scholar
Markowitz, A., Krumpe, M., & Nikutta, R. 2013, AAS/HEAD, 13, #108.10Google Scholar
Martini, P., Kelson, D. D., Kim, E., Mulchaey, J. S., & Athey, A. A., 2006, ApJ, 644, 116Google Scholar
Murray, N., Chiang, J., Grossman, S. A., & Voit, G. M., 1995, ApJ, 451, 498Google Scholar
Nenkova, M., Sirocky, M. M., Nikutta, R., Ivezić, Ž., & Elitzur, M. 2008, ApJ, 685, 160CrossRefGoogle Scholar
Richards, G. T., et al. 2011, AJ, 141, 167Google Scholar
Richards, G. T., et al. 2006, ApJS, 166, 470CrossRefGoogle Scholar
Simpson, C. 2005, MNRAS, 360, 565Google Scholar
Weymann, R. J., Morris, S. L., Foltz, C. B., & Hewett, P. C., 1991, ApJ, 373, 23Google Scholar