Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T12:23:58.025Z Has data issue: false hasContentIssue false

Modeling the magnetosphere of the B2Vp star σ Ori E

Published online by Cambridge University Press:  12 July 2011

Mary E. Oksala
Affiliation:
Department of Physics and Astronomy, University of Delaware, Newark, DE, USA Department of Physics, Royal Military College of Canada, Kingston, Ontario, Canada
Gregg A. Wade
Affiliation:
Department of Physics, Royal Military College of Canada, Kingston, Ontario, Canada
Rich H. D. Townsend
Affiliation:
Department of Astronomy, University of Wisconsin-Madison, Madison, WI, USA
Oleg Kochukhov
Affiliation:
Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
Stan P. Owocki
Affiliation:
Bartol Research Institute, University of Delaware, Newark, DE, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents results obtained from Stokes I and V spectra of the B2Vp star sigma Ori E, observed by both the Narval and ESPaDOnS spectropolarimeters. Using Least-Squares Deconvolution, we investigate the longitudinal magnetic field at the current epoch, including period analysis exploiting current and historical data. σ Ori E is the prototypical helium-strong star that has been shown to harbor a strong magnetic field, as well as a magnetosphere, consisting of two clouds of plasma forced by magnetic and centrifugal forces to co-rotate with the star on its 1.19 day period. The Rigidly Rotating Magnetosphere (RRM) model of Townsend & Owocki (2005) approximately reproduces the observed variations in longitudinal field strength, photometric brightness, Hα emission, and various other observables. There are, however, small discrepancies between the observations and model in the photometric light curve, which we propose arise from inhomogeneous chemical abundances on the star's surface. Using Magnetic Doppler Imaging (MDI), future work will attempt to identify the contributions to the photometric variation due to abundance spots and due to circumstellar material.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bohlender, D. A., Landstreet, J. D., Brown, D. N., & Thompson, I. B. 1987, ApJ, 323, 325CrossRefGoogle Scholar
Gold, T. 1959, Journal of Geophysical Research, 64, 1665CrossRefGoogle Scholar
Hesser, J. E., Walborn, N. R., & Ugarte, P. P. 1976, Nature, 262, 116CrossRefGoogle Scholar
Kemp, J. C., & Herman, L. C. 1977, ApJ, 218, 770CrossRefGoogle Scholar
Krtička, J., Mikuláček, Z., Zverko, J. & Žižńovský, J. 2007, A&A, 470, 1089Google Scholar
Landstreet, J. D. & Borra, E. F. 1978, ApJ (Letters), 224, 5CrossRefGoogle Scholar
Lanz, T. & Hubeny, I. 2007, ApJS, 169, 83CrossRefGoogle Scholar
Leone, F. & Umana, G. 1993, A&A, 268, 667Google Scholar
Pedersen, H. & Thomsen, B. 1977, A&AS, 30, 11Google Scholar
Piskunov, N. & Kochukhov, O. 2002, A&A, 381, 736Google Scholar
Reiners, A., Stahl, O., Wolf, B., Kaufer, A. et al. 2000, A&A, 363, 585Google Scholar
Smith, M. A. & Groote, D. 2001, A&A, 372, 208Google Scholar
Townsend, R. H. D. & Owocki, S. P. 2005, MNRAS, 357, 251CrossRefGoogle Scholar
Townsend, R. H. D., Owocki, S. P., & Groote, D. 2005, ApJ (Letters), 630, 81CrossRefGoogle Scholar
Townsend, R. H. D., Oksala, M. E., Cohen, D. H., Owocki, S. P. et al. 2010, ApJ (Letters), 714, 318CrossRefGoogle Scholar
ud-Doula, A. & Owocki, S. P. 2002, ApJ, 576, 413CrossRefGoogle Scholar
Ud-Doula, A., Owocki, S. P., & Townsend, R. H. D. 2008, MNRAS, 385, 97CrossRefGoogle Scholar
Ud-Doula, A., Owocki, S. P., & Townsend, R. H. D. 2009, MNRAS, 392, 1022CrossRefGoogle Scholar
Wade, G. A., Donati, J.-F., Landstreet, J. D., & Shorlin, S. L. S. 2000, MNRAS, 313, 851CrossRefGoogle Scholar
Walborn, N. R. 1974, ApJ (Letters), 191, 95CrossRefGoogle Scholar