Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T17:57:45.992Z Has data issue: false hasContentIssue false

Modeling the chemistry in the icy mantles of interstellar grains

Published online by Cambridge University Press:  04 September 2018

Juris Kalvāns*
Affiliation:
Engineering Research Institute “Ventspils International Radio Astronomy Centre” of Ventspils University College, Inženieru 101, Ventspils, LV-3601, Latvia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The diffusion and photoprocessing of molecules within interstellar ices has been verified experimentally but often not fully included in astrochemical models. With models that consider photodissociation, binary reactions, and diffusion for molecules on the surface and in bulk ice, we explored the chemistry of interstellar and circumstellar ices in gravitationally contracting low-mass starless and prestellar cores, and a protostellar envelope.

Results. Photoprocessing gradually converts mixed H2O and CO ices into CO2 and allows for a late synthesis of icy organic species. Different layers within a single icy mantle favor the synthesis different species. Deuterium-rich molecules are concentrated on the outer surface of ice. Formation of organic molecules in bulk ice lowers their average deuterium content. The abundances of major icy species can be changed by about 25-50 % because of ice photoprocessing. Inter-layer diffusion of icy species allows sequential evaporation in protostellar envelopes, which occurs over a prolonged period.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Albertsson, T., Semenov, D. A., Vasyunin, A. I., Henning, T., & Herbst, E., 2013, ApJS, 207, 27Google Scholar
Andersson, S. & van Dishoeck, E. F., 2008, A&A, 491, 907Google Scholar
Bergin, E. A., Melnick, G. J., Gerakines, P. A., Neufeld, D. A., & Whittet, D. C. B., 2005, ApJL, 627, L33Google Scholar
Boogert, A. C. A., Huard, T. L., Cook, A. M., Chiar, J. E., Knez, C., Decin, L., Blake, G. A., Tielens, A. G. G. M., & van Dishoeck, E. F., 2011, ApJ, 729, 92Google Scholar
Chang, Q. & Herbst, E., 2016, ApJ, 819, 145Google Scholar
Cuppen, H. & Herbst, E., 2007, ApJ, 668, 294Google Scholar
Fayolle, E. C., Öberg, K. I., Cuppen, H. M., Visser, R., & Linnartz, H., 2011, A&A, 529, A74Google Scholar
Furuya, K., Drozdovskaya, M. N., Visser, R., van Dishoeck, E. F., Walsh, C., Harsono, D., Hincelin, U., & Taquet, V., 2017, A&A, 599, A40Google Scholar
Garrod, R. T., 2013, ApJ, 765, 60Google Scholar
Garrod, R. T., Belloche, A., Mller, H. S. P., & Menten, K. M., 2017, A&A, 601, A48Google Scholar
Garrod, R. T. & Herbst, E., 2006, A&A, 457, 927Google Scholar
Garrod, R. T. & Pauly, T., 2011, ApJ, 735, 15Google Scholar
Garrod, R. T., Wakelam, V., & Herbst, E., 2007, A&A, 467, 1103Google Scholar
Garrod, R. T., Weaver, S. L. W., & Herbst, E., 2008, ApJ, 682, 283Google Scholar
Hasegawa, T. I., Herbst, E., & Leung, C. M., 1992, ApJS, 82, 167Google Scholar
Hincelin, U., Chang, Q., & Herbst, E., 2015, A&A, 574, A24Google Scholar
Kalvāns, J. & Shmeld, I., 2010, A&A, 521, A37Google Scholar
Kalvāns, J. & Shmeld, I., 2013, A&A, 554, A111Google Scholar
Kalvāns, J., 2014, PASP, 126, 811Google Scholar
Kalvāns, J., 2015a, A&A, 573, A38Google Scholar
Kalvāns, J. 2015b, ApJ, 803, 52 (Paper I)Google Scholar
Kalvāns, J. 2015c, ApJ, 806, 196 (Paper II)Google Scholar
Kalvāns, J., Shmeld, I., Kalnin, J. R., & Hocuk, S. 2017, MNRAS, 467, 1763 (Paper III)Google Scholar
Nejad, L. A., Williams, D. A., & Charnley, S. B., 1990, MNRAS, 246, 183Google Scholar
Öberg, K. I., Boogert, A. C. A., Pontoppidan, K. M., van den Broek, S., van Dishoeck, E. F., Bottinelli, S., Blake, G. A., & Evans, N. J. II 2011 ApJ, 740, 109Google Scholar
Prasad, S. S. & Tarafdar, S. P., 1983, ApJ, 267, 603Google Scholar
Roberts, J. F., Rawlings, J. M. C., Viti, S., & Williams, D. A., 2007, MNRAS, 382, 733Google Scholar
Ruaud, M., Wakelam, V., & Hersant, F., 2016, MNRAS, 459, 3756Google Scholar
Ruffle, D. P. & Herbst, E., 2001, MNRAS, 322, 770Google Scholar
Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M., & Valero, G. J., 1988, ApJ, 329, 498Google Scholar
Semenov, D., Hersant, F., Wakelam, V., Dutrey, A., Chapillon, E., Guilloteau, St., Henning, Th., Launhardt, R., Pietu, V., & Schreyer, K., 2010, A&A, 467, 1763Google Scholar
Taquet, V., Charnley, S. B., & Sipilä, O., 2014, ApJ, 791, 1Google Scholar
Taquet, V., Peters, P. S., Kahane, C., Ceccarelli, C., López-Sepulcre, A., Toubin, C., Duflot, D., & Wiesenfeld, L., 2013, A&A, 550, A127Google Scholar
Tielens, A. G. G. M., Tokunaga, A. T., Geballe, T. R., & Baas, F., 1991, ApJ, 381, 181Google Scholar
Vasyunin, A. I., Caselli, P., Dulieu, F., & Jimnez-Serra, I., 2017, ApJ, 842, 33Google Scholar
Whittet, D. C. B., Gerakines, P. A., Hough, J. H., & Shenoy, S. S., 2001, ApJ, 547, 872Google Scholar
Whittet, D. C. B., Shenoy, S. S., Bergin, E. A., Chiar, J. E., Gerakines, P. A., Gibb, E. L., Melnick, G. J., & Neufeld, D. A., 2007, ApJ, 655, 332Google Scholar