Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T12:19:30.580Z Has data issue: false hasContentIssue false

Modeling Pulsars in dense star clusters

Published online by Cambridge University Press:  11 March 2020

Claire S. Ye
Affiliation:
Department of Physics & Astronomy, Northwestern University, Evanston, IL60208, USA email: [email protected] Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, IL60208, USA
Kyle Kremer
Affiliation:
Department of Physics & Astronomy, Northwestern University, Evanston, IL60208, USA email: [email protected] Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, IL60208, USA
Sourav Chatterjee
Affiliation:
Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, IL60208, USA Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai400005, India
Carl L. Rodriguez
Affiliation:
Harvard Institute for Theory and Computation, 60 Garden St, Cambridge, MA02138, USA
Frederic A. Rasio
Affiliation:
Department of Physics & Astronomy, Northwestern University, Evanston, IL60208, USA email: [email protected] Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, IL60208, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over a hundred millisecond radio pulsars (MSPs) have been observed in globular clusters (GCs), motivating theoretical studies of the formation and evolution of these sources through stellar evolution coupled to stellar dynamics. Here we study MSPs in GCs using realistic N-body simulations with our Cluster Monte Carlo code. We show that neutron stars (NSs) formed in electron-capture supernovae can be spun up through mass transfer to form MSPs. Both NS formation and spin-up through accretion are greatly enhanced through dynamical interaction processes. We find that our models for average GCs at the present day with masses ≍ 2 × 105M can produce up to 10 – 20 MSPs, while a very massive GC model with mass ≍ 106M can produce close to 100. We show that the number of MSPs is anti-correlated with the total number of stellar-mass black holes (BHs) retained in the host cluster. As a result, the number of MSPs in a GC could be used to place constraints on its BH population. Some intrinsic properties of MSP systems in our models (such as the magnetic fields and spin periods) are in good overall agreement with observations.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Alpar, M., Cheng, A., Ruderman, M., & Shaham, J. 1982, Nature, 300, 728CrossRefGoogle Scholar
Arca Sedda, M., Askar, A., & Giersz, M. 2018, MNRAS, 479, 4652CrossRefGoogle Scholar
Bahramian, A., Heinke, C. O., Sivakoff, G. R., & Gladstone, J. C. 2013, ApJ, 766, 136CrossRefGoogle Scholar
Bhattacharya, D. & van den Heuvel, E. P. J. 1991, Phys. Rep., 203, 1CrossRefGoogle Scholar
Camilo, F. & Rasio, F. A. 2005, in Binary Radio PulsarsGoogle Scholar
Chatterjee, S., Rasio, F. A., Sills, A., & Glebbeek, E. 2013a, ApJ, 777, 106CrossRefGoogle Scholar
Chatterjee, S., Rodriguez, C. L., & Rasio, F. A. 2017, ApJ, 834, 68CrossRefGoogle Scholar
Clark, G. 1975, ApJ, 199, L143CrossRefGoogle Scholar
Dai et al. 2020, ApJ, 888L, 18DGoogle Scholar
Fragione, G., Pavlk, V., & Banerjee, S. 2018b, MNRAS, 480, 4955Google Scholar
Freire, P., Ridolfi, A., Kramer, M., et al. 2017, MNRAS, 471, 857CrossRefGoogle Scholar
Hobbs, G., Lorimer, D., Lyne, A., & Kramer, M. 2005, MNRAS, 360, 974CrossRefGoogle Scholar
Hui, C., Cheng, K., & Taam, R. E. 2010, ApJ, 714, 1149CrossRefGoogle Scholar
Hurley, et al. 2000, MNRAS, 315, 543HCrossRefGoogle Scholar
Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897CrossRefGoogle Scholar
Hut, P., McMillan, S., Goodman, J., et al. 1992, PASP, 104, 981CrossRefGoogle Scholar
Ivanova, N., Heinke, C. O., Rasio, F. A., Belczynski, K., & Fregeau, J. M. 2008, MNRAS, 386, 553CrossRefGoogle Scholar
Kiel, P. D. & Hurley, J. R. 2009, MNRAS, 395, 2326CrossRefGoogle Scholar
Kiel, P. D., Hurley, J. R., Bailes, M., & Murray, J. R. 2008, MNRAS, 388, 393CrossRefGoogle Scholar
Kremer, K., Ye, C. S., Chatterjee, S., Rodriguez, C. L., & Rasio, F. A. 2018, ApJ, 855, L15CrossRefGoogle Scholar
Lyne, A., Brinklow, A., Middleditch, J., et al. 1987, Nature, 328, 399CrossRefGoogle Scholar
Mackey, A. D., Wilkinson, M. I., Davies, M. B., & Gilmore, G. F. 2008, MNRAS, 386, 65CrossRefGoogle Scholar
Morscher, M., Pattabiraman, B., Rodriguez, C., Rasio, F. A., & Umbreit, S. 2015, ApJ, 800, 9CrossRefGoogle Scholar
Pattabiraman, B., Umbreit, S., Liao, W.-k., et al. 2013, ApJS, 204, 15CrossRefGoogle Scholar
Podsiadlowski, P., Langer, N., Poelarends, A. J. T., et al. 2004, ApJ, 612, 1044CrossRefGoogle Scholar
Pooley, D., Lewin, W. H., Anderson, S. F., et al. 2003, ApJL, 591, L131CrossRefGoogle Scholar
Prager, B. J., Ransom, S. M., Freire, P. C., et al. 2017, ApJ, 845, 148CrossRefGoogle Scholar
Ransom, S. M. 2008, in IAU Symposium, Vol. 246, Dynamical Evolution of Dense Stellar Systems, ed. Vesperini, E., Giersz, M., & Sills, A., 291300Google Scholar
Rappaport, S., Podsiadlowski, P., Joss, P., Di Stefano, R., & Han, Z. 1995, MNRAS, 273, 731CrossRefGoogle Scholar
Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S., & Rasio, F. A. 2018, Phys. Rev. Lett., 120, 151101CrossRefGoogle Scholar
Tauris, T. M., Langer, N., & Kramer, M. 2012, MNRAS, 425, 1601CrossRefGoogle Scholar
Ye, C. S., Kremer, K., Chatterjee, S., Rodriguez, C. L., & Rasio, F. A. 2019, ApJ, 877, 122CrossRefGoogle Scholar