Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T02:16:21.296Z Has data issue: false hasContentIssue false

Modeling kilonova emission from neutron star mergers

Published online by Cambridge University Press:  27 February 2023

Masaomi Tanaka
Affiliation:
Astronomical Institute, Tohoku University, Sendai 980-8578, Japan email: [email protected]
Daiji Kato
Affiliation:
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
Gediminas Gaigalas
Affiliation:
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio Ave. 3, Vilnius, Lithuania
Kyohei Kawaguchi
Affiliation:
Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582, Japan
Laima Radžiūtė
Affiliation:
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio Ave. 3, Vilnius, Lithuania
Pavel Rynkun
Affiliation:
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio Ave. 3, Vilnius, Lithuania
Smaranika Banerjee
Affiliation:
Astronomical Institute, Tohoku University, Sendai 980-8578, Japan email: [email protected]
Nanae Domoto
Affiliation:
Astronomical Institute, Tohoku University, Sendai 980-8578, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Coalescence of binary neutron stars gives rise to kilonova, thermal emission powered by radioactive decays of newly synthesized r-process nuclei. Observational properties of kilonova are largely affected by bound-bound opacities of r-process elements. It is, thus, important to understand atomic properties of heavy elements to link the observed signals with nucleosynthesis of neutron star mergers. In this paper, we introduce the latest status of kilonova modeling by focusing on the aspects of atomic physics. We perform systematic atomic structure calculations of r-process elements to understand element-to-element variation in the opacities. We demonstrate that the properties of the atomic structure of heavy elements are imprinted in the opacities of the neutron star merger ejecta and consequently in the kilonova light curves and spectra. Using this latest opacity dataset, we briefly discuss implications for GW170817, expected diversity of kilonova emission, and prospects for element identification in kilonova spectra.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott, B. P., et al. 2017, ApJL, 848, L12 CrossRefGoogle Scholar
Ascenzi, S., et al. 2019, MNRAS, 486, 672 CrossRefGoogle Scholar
Bar-Shalom, A., Klapisch, M., & Oreg, J. 2001, J. Quant. Spectrosc. Radiative Transfer, 71, 169 CrossRefGoogle Scholar
Banerjee, S., et al. 2020, ApJ, 901, 29 CrossRefGoogle Scholar
Banerjee, S., et al. 2022, in this volumeGoogle Scholar
Barnes, J. & Kasen, D. 2013, ApJ, 775, 18 CrossRefGoogle Scholar
Barnes, J., Kasen, D., Wu, M.-R., & Martnez-Pinedo, G. 2016, ApJ, 829, 110 CrossRefGoogle Scholar
Barnes, J., et al. 2021, ApJ, 918, 44 CrossRefGoogle Scholar
Carvajal Gallego, H., Palmeri, P., & Quinet, P. 2021, MNRAS, 501, 1440 CrossRefGoogle Scholar
Carvajal Gallego, H., et al. 2022, MNRAS, 509, 6138 CrossRefGoogle Scholar
Chornock, R., et al. 2017, ApJL, 848, L19 CrossRefGoogle Scholar
Dietrich, T., et al. 2021, Science, 370, 1405 Google Scholar
Domoto, N., Tanaka, M., Wanajo, S., & Kawaguchi, K. 2021, ApJ, 913, 26 CrossRefGoogle Scholar
Eastman, R. G. & Pinto, P. A. 1993, ApJ, 412, 731 CrossRefGoogle Scholar
Fernández, R. & Metzger, B. D. 2016, Annual Review of Nuclear and Particle Science, 66, 23 CrossRefGoogle Scholar
Fontes, C. J., et al. 2020, MNRAS, 493, 4143 CrossRefGoogle Scholar
Gompertz, B. P., et al. 2018 ApJ, 860, 62 CrossRefGoogle Scholar
Gaigalas, G., et al. 2019, ApJS, 240, 29 CrossRefGoogle Scholar
Gillanders, J. H., et al. 2021, MNRAS, 506, 3560 CrossRefGoogle Scholar
Hotokezaka, K., Tanaka, M., Kato, D., & Gaigalas, G. 2021, MNRAS, 506, 5863 Google Scholar
Karp, A. H., et al. 1977, ApJ, 214, 161 CrossRefGoogle Scholar
Kasen, D., Thomas, R. C., & Nugent, P. 2006, ApJ, 651, 366 CrossRefGoogle Scholar
Kasen, D., Badnell, N. R., & Barnes, J. 2013, ApJ, 774, 25 CrossRefGoogle Scholar
Kasen, D., Fernández, R., & Metzger, B. D. 2015, MNRAS, 450, 1777 CrossRefGoogle Scholar
Kasen, D., et al. 2017, Nature, 551, 80 CrossRefGoogle Scholar
Kasliwal, M. M., et al. 2017, Science, 358, 1559 CrossRefGoogle Scholar
Kato, D., et al. 2021, Japan-Lithuania Opacity Database for Kilonova (version 1.0)Google Scholar
Kawaguchi, K., Shibata, M., & Tanaka, M. 2018, ApJL, 865, L21 CrossRefGoogle Scholar
Kawaguchi, K., Shibata, M., & Tanaka, M. 2020a, ApJ, 889, 171 CrossRefGoogle Scholar
Kawaguchi, K., Shibata, M., & Tanaka, M. 2020b, ApJ, 893, 153 CrossRefGoogle Scholar
Kawaguchi, K., et al. 2021, ApJ, 913, 100 CrossRefGoogle Scholar
Kulkarni, S. R. 2005, arXiv:2005.10256Google Scholar
Li, L.-X., & Paczyński, B. 1998, ApJL, 507, L59CrossRefGoogle Scholar
Lippuner, J. & Roberts, L. F. 2015, ApJ, 815, 82 CrossRefGoogle Scholar
Metzger, B. D., et al. 2010, MNRAS, 406, 2650 CrossRefGoogle Scholar
Metzger, B. D., & Fernández, R. 2014, MNRAS, 441, 3444 Google Scholar
Metzger, B. D. 2017, Living Reviews in Relativity, 20, 3 CrossRefGoogle Scholar
Perego, A., et al. 2017, ApJL, 850, L37 CrossRefGoogle Scholar
Perego, A., et al. 2020, arXiv:2009.08988Google Scholar
Pian, E., et al. 2017, Nature, 551, 67 CrossRefGoogle Scholar
Pognan, Q., Jerkstrand, A., & Grumer, J. 2022, MNRAS, 510, 3806 CrossRefGoogle Scholar
Radžiūtė, L., et al. 2020, ApJS, 248, 17 Google Scholar
Radžiūtė, L., et al. 2021, ApJS, 257, 29 Google Scholar
Rastinejad, J. C., et al. 2021, ApJ, 916, 89 CrossRefGoogle Scholar
Rossi, A., et al. 2020, MNRAS, 493, 3379 CrossRefGoogle Scholar
Rosswog, S. 2015, International Journal of Modern Physics D, 24, 1530012 CrossRefGoogle Scholar
Rosswog, S., et al. 2018, A&A, 615, A132 Google Scholar
Smartt, S. J., et al. 2017, Nature, 551, 75 CrossRefGoogle Scholar
Sobolev, V. V. 1960, Moving envelopes of starsCrossRefGoogle Scholar
Tanaka, M. & Hotokezaka, K. 2013, ApJ, 775, 113 CrossRefGoogle Scholar
Tanaka, M. 2016, Advances in Astronomy, 2016, 634197 CrossRefGoogle Scholar
Tanaka, M., et al. 2017, PASJ, 69, 102 Google Scholar
Tanaka, M., et al. 2018, ApJ, 852, 109 CrossRefGoogle Scholar
Tanaka, M., Kato, D., Gaigalas, G., & Kawaguchi, K. 2020, MNRAS, 496, 1369 CrossRefGoogle Scholar
Troja, E., et al. 2017, Nature, 551, 71 CrossRefGoogle Scholar
Wanajo, S., et al. 2014, ApJL, 789, L39 CrossRefGoogle Scholar
Wanajo, S. 2018, ApJ, 868, 65 CrossRefGoogle Scholar
Watson, D., et al. 2019, Nature, 574, 497 CrossRefGoogle Scholar
Wollaeger, R. T., et al. 2018, MNRAS, 478, 3298 CrossRefGoogle Scholar