Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T07:21:59.343Z Has data issue: false hasContentIssue false

Modeling giant planets and brown dwarfs

Published online by Cambridge University Press:  10 November 2011

Andreas Becker
Affiliation:
Institute of Physics, University of Rostock, Universitätsplatz 3, 18051, Rostock, Germany email: [email protected]
Nadine Nettelmann
Affiliation:
Dept. of Astronomy & Astrophysics, University of California, CA 95064 Santa Cruz, USA
Ulrike Kramm
Affiliation:
Institute of Physics, University of Rostock, Universitätsplatz 3, 18051, Rostock, Germany email: [email protected]
Winfried Lorenzen
Affiliation:
Institute of Physics, University of Rostock, Universitätsplatz 3, 18051, Rostock, Germany email: [email protected]
Martin French
Affiliation:
Institute of Physics, University of Rostock, Universitätsplatz 3, 18051, Rostock, Germany email: [email protected]
Ronald Redmer
Affiliation:
Institute of Physics, University of Rostock, Universitätsplatz 3, 18051, Rostock, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present new results in modeling the interiors of Giant Planets (GP) and Brown Dwarfs (BD). In general models of the interior rely on equation of state data for planetary materials which have considerable uncertainties in the high-pressure domain. Our calculations are based on ab initio equation of state (EOS) data for hydrogen, helium, hydrogen-helium mixtures and water as the representative of all heavier elements or ices using finite-temperature density functional theory molecular dynamics (FT-DFT-MD) simulations. We compare results for the BD Gliese 229B calculated with Saumon-Chabrier-Van Horn EOS (SCVH95) and our EOS data.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Basri, G. 2000, Scientific American, 05/2000, 27Google Scholar
Burrows, A. & Liebert, J. 1993, Rev. Mod. Phys., 65, 301CrossRefGoogle Scholar
French, M., Mattson, T. R., Nettelmann, N., & Redmer, R. 2009, Phys. Rev. B, 79, 054107CrossRefGoogle Scholar
Guillot, T. 1999, Science, 286, 27CrossRefGoogle Scholar
Holst, B., Redmer, R., & Desjarlais, M. P. 2008, Phys. Rev. B, 77, 184201CrossRefGoogle Scholar
Kietzmann, A., Redmer, R., Desjarlais, M. P., & Mattson, T. R. 2007, Phys. Rev. Lett., 98, 190602CrossRefGoogle Scholar
Kresse, G. & Furthmüller, J. 1996, Phys. Rev. B, 54, 11169CrossRefGoogle Scholar
Lorenzen, W., Holst, B., & Redmer, R. 2009, Phys. Rev. Lett., 102, 115701CrossRefGoogle Scholar
Nettelmann, N., Holst, B., Kietzmann, A., French, M., Blaschke, D., & Redmer, R. 2008, ApJ, 683, 1217CrossRefGoogle Scholar
Nettelmann, N., Kramm, U., Redmer, R., & Neuhäuser, R. 2010, A&A, 523, A26Google Scholar
Redmer, R., Mattson, T. R., Nettelmann, N., & French, M. 2011, Icarus, 211, 798CrossRefGoogle Scholar
Saumon, D., Chabrier, G., & Van Horn, H. M. 1995, ApJS, 99, 713CrossRefGoogle Scholar
Stanley, S. & Bloxham, J. 2004, Nature, 428, 151CrossRefGoogle Scholar
Stevenson, D. J. 1991, Annu. Rev. Astron. Astrophys. 29, 163CrossRefGoogle Scholar