Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T16:49:16.522Z Has data issue: false hasContentIssue false

Modeling a high velocity LMC: The formation of the Magellanic Stream

Published online by Cambridge University Press:  01 July 2008

Chiara Mastropietro*
Affiliation:
LERMA, Observatoire de Paris, UPMC, CNRS, 61, A. de l'Observatoire, 75014, Paris, France, email: [email protected] Universitäts Sternwarte München, Scheinerstr.1, D-81679 München, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I use high resolution N-body/SPH simulations to model the new proper motion of the Large Magellanic Cloud (LMC) within the Milky Way (MW) halo and investigate the effects of gravitational and hydrodynamical forces on the formation of the Magellanic Stream (MS). Both the LMC and the MW are fully self consistent galaxy models embedded in extended cuspy ΛCDM dark matter halos. I find that ram-pressure from a low density ionized halo is sufficient to remove a large amount of gas from the LMC's disk forming a trailing Stream that extends more than 120 degrees from the Cloud. Tidal forces elongate the satellite's disk but do not affect its vertical structure. No stars become unbound showing that tidal stripping is almost effectless.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Besla, G., Kallivayalil, N., Hernquist, L., Robertson, B., Cox, T. J., van der Marel, R. P., & Alcock, C. 2007, ApJ, 668, 949CrossRefGoogle Scholar
Hernquist, L. 1993, ApJS, 86, 389CrossRefGoogle Scholar
Kallivayalil, N., van der Marel, R. P., Alcock, C., Axelrod, T., Cook, K. H., Drake, A. J., & Geha, M. 2006a, ApJ, 638, 772CrossRefGoogle Scholar
Kallivayalil, N., van der Marel, R. P., & Alcock, C. 2006b, ApJ, 652, 1213CrossRefGoogle Scholar
Klypin, A., Zhao, H., & Somerville, R. S. 2002, ApJ, 573, 597CrossRefGoogle Scholar
Kroupa, P. & Bastian, U. 1997, New Astronomy, 2, 77CrossRefGoogle Scholar
Mastropietro, C., Moore, B., Mayer, L., Wadsley, J., & Stadel, J. 2005, MNRAS, 363, 509CrossRefGoogle Scholar
Mayer, L., Mastropietro, C., Wadsley, J., Stadel, J., & Moore, B. 2006, MNRAS, 369, 1021CrossRefGoogle Scholar
Piatek, S., Pryor, C., & Olszewski, E. W. 2008, AJ, 135, 1024CrossRefGoogle Scholar
Růžička, A., Theis, C., & Palouš, J. 2008, ApJ, in press, arXiv:0810.0968Google Scholar
van der Marel, R. P., Alves, D. R., Hardy, E., & Suntzeff, N. B. 2002, AJ, 124, 2639CrossRefGoogle Scholar
Wadsley, J. W., Stadel, J., & Quinn, T. 2004, New Astronomy, 9, 137CrossRefGoogle Scholar