Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T15:17:06.307Z Has data issue: false hasContentIssue false

Model of poleward magnetic field streams from sunspot butterflies

Published online by Cambridge University Press:  18 July 2013

Nadezhda V. Zolotova
Affiliation:
Institute of Physics, St. Petersburg State University, Ulyanovskaya ul.1, Petrodvorets, St. Petersburg, Russia, 198504 email: [email protected]
Dmitri I. Ponyavin
Affiliation:
Institute of Physics, St. Petersburg State University, Ulyanovskaya ul.1, Petrodvorets, St. Petersburg, Russia, 198504 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The poleward magnetic field streams on time-latitude diagram of the photospheric magnetic field of the Sun during 1975–2011 (Kitt Peak NSO, SOLIS NSO, SOHO MDI data) are modeled. We performed simulations in terms of probability density function and bipole orientation according to Joy's law and Hale's cycle. The difference between distributions of leading and trailing fluxes of bipolar sunspots defines the so-called surplus. Finally, magnetic field streams and polar field reversals are a result of meridional drift of a surplus to the poles.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Antalová, A. & Gnevyshev, M. N. 1983, Contributions of the Astronomical Observatory Skalnate Pleso 11, 63 Google Scholar
Cowling, T. G. 1965, in: Lust, R. (eds.) Stellar and Solar Magnetic Fields, Proc. IAU Symposium No. 22 (North-Holland Pub. Co., Amsterdam), p. 405 Google Scholar
DeVore, C. R. & Sheeley, N. R. Jr. 1987, Solar Phys. 108, 47 CrossRefGoogle Scholar
Dikpati, M., Gilman, P. A., & Ulrich, R. K. 2010, ApJ 722, 774 CrossRefGoogle Scholar
Gnevyshev, M. N. 1938, Izvestiya Glavnoj Astronomicheskoj Observatorii v Pulkove 16, 36 Google Scholar
Hale, G. E., Ellerman, F., Nicholson, S. B., & Joy, A. H. 1919, ApJ 49, 153 CrossRefGoogle Scholar
Hathaway, D. H. 2010, Living Rev. Solar Phys. 7, 1 CrossRefGoogle Scholar
Hathaway, D. H. & Rightmire, L. 2010, Science 327, 1350 CrossRefGoogle Scholar
Hathaway, D. H. & Rightmire, L. 2011, ApJ 729, 80 CrossRefGoogle Scholar
Jiang, J., Cameron, R. H., Schmitt, D., & Schüssler, M. 2011, Space Sci. Revs 136 Google Scholar
Mackay, D. H., Priest, E. R., & Lockwood, M. 2002, Solar Phys. 207, 291 CrossRefGoogle Scholar
Nandy, D., Muñoz-Jaramillo, A., & Martens, P. C. H. 2011, Nature 471, 80 CrossRefGoogle Scholar
Schrijver, C. J. & Liu, Y. 2008, Solar Phys. 252, 19 CrossRefGoogle Scholar
Schrijver, C. J. & Title, A. M. 2001, ApJ 551, 1099 CrossRefGoogle Scholar
Stenflo, J. O. & Kosovichev, A. G. 2012, ApJ 745, 129 CrossRefGoogle Scholar
van Ballegooijen, A. A., Cartledge, N. P., & Priest, E. R. 1998, ApJ 501, 866 CrossRefGoogle Scholar
Wang, Y.-M., Lean, J., & Sheeley, N. R. Jr. 2002a, Ap. Lett. 577, L53 CrossRefGoogle Scholar
Wang, Y.-M., Nash, A. G., & Sheeley, N. R. Jr. 1989, ApJ 347, 529 CrossRefGoogle Scholar
Wang, Y.-M., Robbrecht, E., & Sheeley, N. R. Jr. 2009, ApJ 707, 1372 CrossRefGoogle Scholar
Wang, Y.-M., Sheeley, N. R. Jr. & Lean, J. 2002b, ApJ 580, 1188 CrossRefGoogle Scholar
Wang, Y.-M. & Sheeley, N. R. Jr. 1989, Solar Phys. 124, 81 CrossRefGoogle Scholar
Wang, Y.-M. & Sheeley, N. R. Jr. 1991, ApJ 375, 761 CrossRefGoogle Scholar
Zolotova, N. V. & Ponyavin, D. I. 2012a, Astron. Rep. 56, 250 CrossRefGoogle Scholar
Zolotova, N. V. & Ponyavin, D. I. 2012b, in: Mandrini, C.H. & Webb, D.F. (eds.), Comparative Magnetic Minima: Characterizing quiet times in the Sun and stars, Proc. IAU Symposium No. 286 (Cambridge University Press), p. 88 Google Scholar