Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T00:11:28.908Z Has data issue: false hasContentIssue false

MOCCA survey database I: Preliminary mock Extra Galactic Globular Cluster observations

Published online by Cambridge University Press:  11 March 2020

Agostino Leveque
Affiliation:
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland emails: [email protected], [email protected]
Mirosław Giersz
Affiliation:
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland emails: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The photometric properties that we could observe for Extra-Galactic Globular Clusters (EGGCs) are the integrated light of the system and for nearby EGGCs it also is possible to measure both half-light radii and the color spatial distribution, e.g. for areas smaller and larger than the half-light radius. No information about the internal dynamical state of the system could be directly obtained from observations. On the other hand, simulations of Globular Clusters (GCs) can provide detailed information about the dynamical evolution of the system.

We present a preliminary study of EGGCs’ photometric properties for different dynamical evolutionary stages. We apply this study to 12Gyr old GCs simulated as part of the MOCCA Survey Database. We determine the magnitudes in different bands from their projected snapshots using the Flexible Stellar Population Synthesis (FSPS) code and we measure the half-light radii from the surface brightness.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Ashman, K. M. & Zepf, S. E. 1992, ApJ, 384, 50CrossRefGoogle Scholar
Forbes, D. A., Brodie, J. P., & Grillmair, C. J. 1997a, AJ, 113, 165210.1086/118382CrossRefGoogle Scholar
Côté, P., Marzke, R. O., & West, M. J. 1998, ApJ, 501, 554CrossRefGoogle Scholar
Brodie, J. P. & Strader, J. 2006, ARAA, 44:19326710.1146/annurev.astro.44.051905.092441CrossRefGoogle Scholar
Larsen, S. S., Brodie, J. P., Huchra, J. P., Forbes, D. A., & Grillmair, C. J. 2001, AJ, 121:29742998CrossRefGoogle Scholar
Peng, E. W., Jordán, A., Côté, P., Blakeslee, J. P., Ferrarese, L., Mei, S., West, M. J., Merritt, D., Milosavljević, M., & Tonry, J. L. 2006, ApJ, 639:95119CrossRefGoogle Scholar
Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M., & Bulik, T. 2017, MNRAS, 464:L36L40CrossRefGoogle Scholar
Askar, A., Giersz, M., Pych, W., & Dalessandro, E. 2018, MNRAS, 475:41704185Google Scholar
Conroy, C. & Gunn, J. E. 2010, ApJ, 712:83385710.1088/0004-637X/712/2/833CrossRefGoogle Scholar
Conroy, C., Gunn, J. E., & White, M. 2009, ApJ, 699:486506CrossRefGoogle Scholar
Giersz, M., Leigh, N., Hypki, A., Lützgendorf, N., & Askar, A. 2015, MNRAS, 454:31503165CrossRefGoogle Scholar