Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T09:08:45.815Z Has data issue: false hasContentIssue false

The Milky Way thin disk structure as revealed by stars and young open clusters

Published online by Cambridge University Press:  06 January 2014

Giovanni Carraro*
Affiliation:
Alonso de Cordova 3107, 19001, Santiago de Chile, Chile email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this contribution I shall focus on the structure of the Galactic thin disk. The evolution of the thin disk and its chemical properties have been discussed in detail by T. Bensby's contribution in conjunction with the properties of the Galactic thick disk, and by L.Olivia in conjunction with the properties of the Galactic bulge. I will review and discuss the status of our understanding of three major topics, which have been the subject of intense research nowadays, after long years of silence: (1) the spiral structure of the Milky Way, (2) the size of the Galactic disk, and (3) the nature of the Local arm (Orion spur), where the Sun is immersed. The provisional conclusions of this discussion are that: (1) we still have quite a poor knowledge of the Milky Way spiral structure, and the main disagreements among various tracers are still to be settled; (2) the Galactic disk does clearly not have an obvious luminous cut-off at about 14 kpc from the Galactic center, and next generation Galactic models need to be updated in this respect, and (3) the Local arm is most probably an inter-arm structure, similar to what we see in several external spirals, like M 74. Finally, the impact of Gaia and LAMOST in this field will be briefly discussed as well.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Anderson, L. D., Bania, T. M., Balser, D. S., Rood, R. T. 2011, ApJS, 194, 32CrossRefGoogle Scholar
Brand, J., & Wouterloot, J. G. A. 2007, A&A, 464, 909Google Scholar
Carraro, G., Vázquez, R. A., Costa, E., Perren, G., Moitinho, A. 2010, ApJ, 718, 683Google Scholar
Carraro, G. 2011, A&A, 536, 101Google Scholar
Carraro, G., Beletski, Y., Marconi, G. 2013a, MNRAS, 428, 502Google Scholar
Carraro, G., Turner, D., Majaess, D., Baume, G. 2013b, A&A, 555, 50Google Scholar
Chung, E. J., Rhee, M.-H., Kin, H., Yun, M. S., Heyer, M., Young, J. S. 2009, ApJS, 184, 199CrossRefGoogle Scholar
Churchwell, E., Babler, B. L., Meade, M. R., Whitney, B. A., et al. 2009, PASP, 121, 213Google Scholar
Dame, T. M., Thaddeus, P. 2011, ApJ, 734, L24CrossRefGoogle Scholar
de la Fuente Marcos, R., de la Fuente Marcos, C., Moni Bidin, C., Carraro, G., Costa, E. 2013, MNRAS, in pressGoogle Scholar
Dias, W. S., Lepine, J. R. D. 2005, ApJ, 629, 825Google Scholar
Gilmore, G., Wyse, R. F. G., Kuijken, K. 1989, ARAA, 27, 555Google Scholar
Gingerich, O. 1985, IAUS, 106, 59Google Scholar
Hammerslery, P. L., López-Corredoira, M. 2011, A&A, 527, A6Google Scholar
Kalberla, P. M. W., & Kerp, J. 2009, ARAA, 47, 27Google Scholar
Laine, S., Knapen, J. H., Munoz-Mateos, J.-C., Kim, T., et al. 2013, ApJ, in pressGoogle Scholar
Levine, E. S., Blitz, L., Heiles, C. 2006, Science, 312, 1773CrossRefGoogle Scholar
Liszt, H. S. 1985, IAUS, 106, 283Google Scholar
López-Corredoira, M., Moitinho, A., Zaggia, S., Momany, Y., Carraro, G., et al. 2012, arXiv, 1207, 2749Google Scholar
Majaess, D., Turner, D., Lane, D. J. 2009, JAAVSO, 37, 179Google Scholar
McClure-Griffiths, N. M., Dickey, J. M., Gaensler, B. M., Green, A. J. 2004, ApJ, 607, L127CrossRefGoogle Scholar
Minniti, D., Saito, R. K., Alonso-Garcias, J., Lucas, P. W., Hempel, M. 2011, ApJ, 733, L43Google Scholar
Moitinho, A. 2001, A&A, 370, 436Google Scholar
Moitinho, A., Vázquez, R. A., Carraro, G., Baume, G., Giorgi, E. E., Lyra, W. 2006, MNRAS, 368, L77Google Scholar
Momany, Y., Zaggia, S., Gilmore, G., Piotto, G., Carraro, G., Bedin, L., de Angeli, F. 2006, A&A, 451, 515Google Scholar
Monguió, M., Figueras, F., Grosbol, P. 2012, A&A, 549, 78Google Scholar
Morgan, W. W., Whitford, A. E., Code, A. D. 1953, ApJ, 118, 31Google Scholar
Perren, G., Vázquez, R. A., Carraro, G. 2012, A&A, 548, 125Google Scholar
Reid, M. J., Menten, K. M., Zheng, X. W., Brunthaler, A., et al. 2009, ApJ, 700, 137Google Scholar
Robin, A. C., Creze, M., Mohan, V. 1992, ApJ, 400, L25CrossRefGoogle Scholar
Robin, A. C., Reylé, C., Derrieére, S., Picaud, S. 2003, A&A, 409, 523Google Scholar
Russeil, D. 2003, A&A, 397, 133Google Scholar
Sale, S. E., Drew, J. E., Knigge, C., Zijlstra, A. A., et al. 2010, MNRAS, 402, 713Google Scholar
Vázquez, R., May, J., Carraro, G., Bronfman, L., Moitinho, A., Baume, G. 2008, ApJ, 672, 930CrossRefGoogle Scholar
Xu, Y., Li, J. J., Reid, M. J., Menten, K. M., et al. 2013, arXiv, 1304, 0526Google Scholar
Yusifov, I. 2004, The Magnetized Interstellar Medium, Proceedings of the conference, held in Antalya, Turkey, September 8 - 12, 2003, Eds: Uyaniker, B., Reich, W., and Wielebinski, R., Copernicus GmbH, Katlenburg-Lindau., p. 165169Google Scholar