Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T00:38:28.796Z Has data issue: false hasContentIssue false

Milky Way: structure via live potentials

Published online by Cambridge University Press:  09 June 2023

Eva Durán-Camacho
Affiliation:
School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, UK email: [email protected]
Ana Duarte-Cabral
Affiliation:
School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use the AREPO numerical code to model the structure of a Milky Way like galaxy (MW) via a suite of simulations composed of a stellar disc and bulge, a dark matter halo, and a gaseous disc under isothermal conditions. For each model, we produce longitude velocity (l-v) maps of the gas surface densities to extract the skeletons of the main features (arms, bar), and the contours defining the terminal velocities of the gas. We compare these with observations via a number of diagnostic tools, and select the model that best reproduces the main observed features of the Milky Way.

Type
Poster Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Elmegreen, D. M. 1985, In Symposium-International Astronomical Union (Vol. 106, pp. 255272). Cambridge University Press.Google Scholar
Xu, Y., Reid, M., Dame, T., Menten, K., Sakai, N., Li, J., Zheng, X. 2016, Science Advances 2(9), e1600878 10.1126/sciadv.1600878CrossRefGoogle Scholar
Weinberg, M. D. 1992, ApJ 384, 8194 10.1086/170853CrossRefGoogle Scholar
Dobbs, C. L., Pringle, J. E. 2013, MNRAS 432(1), 653667 10.1093/mnras/stt508CrossRefGoogle Scholar
Smith, R. J., Treß, R. G., Sormani, M. C., Glover, S. C., Klessen, R. S., Clark, P. C., Zucker, C. 2020, MNRAS 492(2), 15941613 10.1093/mnras/stz3328CrossRefGoogle Scholar
Pettitt, A. R., Dobbs, C. L., Acreman, D. M., Price, D. J. 2014, MNRAS 444(1), 919941 10.1093/mnras/stu1075CrossRefGoogle Scholar
Pettitt, A. R., Dobbs, C. L., Acreman, D. M., Bate, M. R. 2015, MNRAS 449(4), 39113926 10.1093/mnras/stv600CrossRefGoogle Scholar
Springel, V. 2010, MNRAS 401(2), 791851 10.1111/j.1365-2966.2009.15715.xCrossRefGoogle Scholar
Springel, V., Di Matteo, T., Hernquist, L. 2005, MNRAS 361(3), 776794 10.1111/j.1365-2966.2005.09238.xCrossRefGoogle Scholar
Hernquist, L. 1990, ApJ 356, 359364 10.1086/168845CrossRefGoogle Scholar
Ferriere, K., Gillard, W., Jean, P. 2007, ARAA 467(2), 611627 10.1051/0004-6361:20066992CrossRefGoogle Scholar
Dame, T. M., Hartmann, D., Thaddeus, P. 2001, ApJ 547(2), 792 10.1086/318388CrossRefGoogle Scholar
Sormani, M. C., Magorrian, J. 2015, MNRAS 446(4), 41864204 10.1093/mnras/stu2316CrossRefGoogle Scholar
Wheelock, S. L., Gautier, T. N., Chillemi, J., Kester, D., McCallon, H., Oken, C., … Good, J. 1994, (No. NAS 1.26: 197335)Google Scholar
Collaboration, P., Ade, P. A. R., Aghanim, N., Akrami, Y., Aluri, P. K., Arnaud, M., … Mennella, A. 2016Google Scholar
Supplementary material: PDF

Durán-Camacho and Duarte-Cabral supplementary material

Durán-Camacho and Duarte-Cabral supplementary material

Download Durán-Camacho and Duarte-Cabral supplementary material(PDF)
PDF 10.9 MB