Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-10-28T04:27:41.505Z Has data issue: false hasContentIssue false

Migration of giant planets in low viscosity discs and consequences on the Nice model

Published online by Cambridge University Press:  16 October 2024

P. Griveaud*
Affiliation:
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France
A. Crida
Affiliation:
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France
E. Lega
Affiliation:
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France
A. C. Petit
Affiliation:
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France
A. Morbidelli
Affiliation:
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using 2D hydrodynamical simulations, we show that in a low viscosity protoplanetary disc, Jupiter and Saturn get locked in the 2:1 mean motion resonance and migrate slowly inwards, unlike cases at higher viscosities. We conclude that in such discs the scenario of the Grand-Tack is not possible. Additionally, we investigate how the migration of the four (potentially five) giant planets in low viscous discs may affect the initial conditions of another important model for the formation history of our Solar System: the Nice Model. Adding ice giants in our hydrodynamical simulations, we find different possible resonant chains induced by migration. We then let the disc evolve until the gas phase dissipates and study the dynamical stability of the system. We find it possible to recreate the Solar System from such resonant chains, however the likelihood of this outcome remains low.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Batygin, K. 2015, Monthly Notices of the Royal Astronomical Society, 451, 2589 CrossRefGoogle Scholar
Brown, M. E. & Batygin, K. 2021, The Astronomical Journal, 162, 219 CrossRefGoogle Scholar
Clement, M. S., Raymond, S. N., Kaib, N. A., et al. 2021, Icarus, 355, 114122 CrossRefGoogle Scholar
Griveaud, P., Crida, A., & Lega, E. 2023, Astronomy & Astrophysics, 672, A190 CrossRefGoogle Scholar
Hallam, P. D. & Paardekooper, S. J. 2020, Monthly Notices of the Royal Astronomical Society, 491, 5759 CrossRefGoogle Scholar
Hammer, M., Kratter, K. M., & Lin, M.-K. 2017, Monthly Notices of the Royal Astronomical Society, 466, 3533 CrossRefGoogle Scholar
Masset, F. & Snellgrove, M. 2001, Monthly Notices of the Royal Astronomical Society, 320, L55 CrossRefGoogle Scholar
Morbidelli, A. & Crida, A. 2007, Icarus, 191, 158 CrossRefGoogle Scholar
Nesvorný, D. & Morbidelli, A. 2012, The Astronomical Journal, 144, 117 CrossRefGoogle Scholar
Pinte, C., Dent, W. R. F., Ménard, F., et al. 2016, The Astrophysical Journal, 816, 25 CrossRefGoogle Scholar
Rein, H., Hernandez, D. M., Tamayo, D., et al. 2019, Monthly Notices of the Royal Astronomical Society, 485, 5490 CrossRefGoogle Scholar
Rein, H. & Liu, S. F. 2012, Astronomy and Astrophysics, 537, A128 CrossRefGoogle Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, Astronomy and Astrophysics, 24, 337 Google Scholar
Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. 2005, Nature, 435, 459 CrossRefGoogle Scholar
Turner, N. J., Fromang, S., Gammie, C., et al. 2014, Transport and Accretion in Planet-Forming Disks (eprint: arXiv:1401.7306), 411CrossRefGoogle Scholar
Villenave, M., Stapelfeldt, K. R., Duchêne, G., et al. 2022, The Astrophysical Journal, 930, 11 CrossRefGoogle Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. 2011, Nature, 475, 206 CrossRefGoogle Scholar