Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T04:43:20.875Z Has data issue: false hasContentIssue false

Microlensing Constraints on the Abundance of Extrasolar Planets

Published online by Cambridge University Press:  29 April 2014

Arnaud Cassan
Affiliation:
Institut d'Astrophysique de Paris, Université Pierre & Marie Curie, UMR7095 UPMC–CNRS 98 bis boulevard Arago, 75014 Paris, France email: [email protected]
PLANET
Affiliation:
The Probing Lensing Anomalies NETwork (PLANET) Collaboration
OGLE
Affiliation:
The Optical Gravitational Lensing Experiment (OGLE) Collaboration
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galactic gravitational microlensing is a powerful technique to detect extrasolar planets at large orbital distances from their stars, from giant down to Earth-mass planets. We report a statistical analysis (Cassan et al. 2012) that combines six years of microlensing observations gathered between 2002 to 2007 by the PLANET and OGLE collaborations. From these data, we estimate the frequency of cool extrasolar planets, with masses ranging from 5 Earths to 10 Jupiters and orbits between 0.5 to 10 Astronomical Units. We find that in average, one in six stars has a Jupiter-like gas giant as companion planet, that about half the stars are orbited by a Neptune-like giant, and two-thirds are associated to super-Earths. Our study also suggests that planets should be ubiquitous throughout the Galaxy. Current deployment of wide-field imagers and possible space-based observations onboard ESA spacecraft EUCLID will soon allow a large increase of the number of monitored microlensing events. These new observatories should provide in a near future a more detailed view on planet abundance as a function of mass.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Albrow, M. D.et al. 1998, Astrophys. J., 509, 687CrossRefGoogle Scholar
Beaulieu, J.-P.et al.Nature, 439, 437CrossRefGoogle Scholar
Bond, I. A.et al. 2001, Mon. Not. R. Astron. Soc., 327, 868Google Scholar
Cassan, A. 2008, Astron. Astrophys., 491, 587Google Scholar
Cassan, A.et al. 2012, Nature 481, 167Google Scholar
Cumming, A.et al. 2008, Publ. Astron. Soc. Pacif., 120, 531CrossRefGoogle Scholar
Dominik, M. 2006, Mon. Not. R. Astron. Soc., 367, 669CrossRefGoogle Scholar
Dong, S.et al. 2009, Astrophys. J., 695, 970CrossRefGoogle Scholar
Einstein, A. 1936, Science, 84, 506Google Scholar
Gaudi, B. S. & Sackett, P. D. 2000, Astrophys. J., 528, 56CrossRefGoogle Scholar
Gaudi, B. S.et al. 2002, Astrophys. J., 566, 463CrossRefGoogle Scholar
Gould, A. & Loeb, A. 1992, Astrophys. J., 396, 104CrossRefGoogle Scholar
Gould, A.et al. 2010, Astrophys. J., 720, 1073Google Scholar
Kubas, D.et al. 2008, Astron. Astrophys., 483, 317CrossRefGoogle Scholar
Mayor, M. & Queloz, D. 1995, Nature, 378, 355Google Scholar
Mao, S. & Paczynski, B. 1991, Astrophys. J., 374, L37CrossRefGoogle Scholar
Penny, M. T.et al. 2012, arXiv:1206.5296Google Scholar
Snodgrass, C.et al. 2004, Mon. Not. R. Astron. Soc., 351, 967Google Scholar
Sumi, T.et al. 2010, Astrophys. J., 710, 1641CrossRefGoogle Scholar
Sumi, T.et al. 2011, Nature, 473, 349Google Scholar
Tsapras, Y.et al. 2003, Mon. Not. R. Astron. Soc., 343, 1131CrossRefGoogle Scholar
Udalski, A.et al. 2003, Acta Astron., 53, 291Google Scholar
Udalski, A.et al. 2005, Astrophys. J., 628, L109CrossRefGoogle Scholar