Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T11:38:20.811Z Has data issue: false hasContentIssue false

MHD turbulence-Star Formation Connection: from pc to kpc scales

Published online by Cambridge University Press:  08 June 2011

E. M. de Gouveia Dal Pino
Affiliation:
IAG, Universidade de São Paulo, Rua do Matão 1226, São Paulo 05508-090, Brazil email: [email protected]
R. Santos-Lima
Affiliation:
IAG, Universidade de São Paulo, Rua do Matão 1226, São Paulo 05508-090, Brazil email: [email protected]
A. Lazarian
Affiliation:
Astronomy Department, University of Wisconsin, Madison, WI, USA
M. R. M. Leão
Affiliation:
IAG, Universidade de São Paulo, Rua do Matão 1226, São Paulo 05508-090, Brazil email: [email protected]
D. Falceta-Gonçalves
Affiliation:
NAC, Universidade Cruzeiro do Sul, Rua Galvão Bueno 868, São Paulo 01506-000, Brazil
G. Kowal
Affiliation:
IAG, Universidade de São Paulo, Rua do Matão 1226, São Paulo 05508-090, Brazil email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The transport of magnetic flux to outside of collapsing molecular clouds is a required step to allow the formation of stars. Although ambipolar diffusion is often regarded as a key mechanism for that, it has been recently argued that it may not be efficient enough. In this review, we discuss the role that MHD turbulence plays in the transport of magnetic flux in star forming flows. In particular, based on recent advances in the theory of fast magnetic reconnection in turbulent flows, we will show results of three-dimensional numerical simulations that indicate that the diffusion of magnetic field induced by turbulent reconnection can be a very efficient mechanism, especially in the early stages of cloud collapse and star formation. To conclude, we will also briefly discuss the turbulence-star formation connection and feedback in different astrophysical environments: from galactic to cluster of galaxy scales.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Cooper, J. L., Bicknell, G. V., Sutherland, R. S., & Bland-Hawthorn, J. 2008, ApJ, 674, 157CrossRefGoogle Scholar
Crutcher, R. M. 2005, in: Cesaroni, R., Felli, M., Churchwell, E., & Walmsley, M. (eds.), Massive Star Birth: A Crossroads of Astrophysics, Proc. IAU Symposium No. 227, p. 98CrossRefGoogle Scholar
de Avillez, M. A. & Breitschwerdt, D. 2005, A&A, 436, 585Google Scholar
de Avillez, M. A. 2000, MNRAS, 315, 479CrossRefGoogle Scholar
Elmegreen, B. G. & Scalo, J. 2004, ARAA, 42, 211CrossRefGoogle Scholar
Fabian, A. C., Johnstone, R. M., Sanders, J. S., Conselice, C. J., Crawford, C. S., Gallagher, J. S. III, & Zweibel, E. 2008, Nature, 454, 968CrossRefGoogle Scholar
Falceta-Gonçalves, D., Caproni, A., Abraham, Z., Teixeira, D. M., & de Gouveia Dal Pino, E. M. 2010, ApJ (Letters), 713, L74CrossRefGoogle Scholar
Falceta-Gonçalves, D., de Gouveia Dal Pino, E. M., Gallagher, J. S., & Lazarian, A. 2010, ApJ (Letters), 708, L57CrossRefGoogle Scholar
Heiles, C. & Troland, T. H. 2005, ApJ, 624, 773CrossRefGoogle Scholar
Hensler, G. 2010, in: Alves, J., Elmegreen, B., & Trimble, V. (eds.), Computational Star Formation, Procs. IAU Symposium No. 270, in pressGoogle Scholar
Kowal, G., Lazarian, A., & Beresnyak, A. 2007, ApJ, 658, 423CrossRefGoogle Scholar
Kowal, G., Lazarian, A., Vishniac, E. T., & Otmianowska-Mazur, K. 2009, ApJ, 700, 63CrossRefGoogle Scholar
Krasnopolsky, R., Li, Z.-Y., & Shang, H. 2010, ApJ, 716, 1541CrossRefGoogle Scholar
Lazarian, A. 2005, in: de Gouveia dal Pino, E. M., Lugones, G., & Lazarian, A. (eds.), Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures., American Institute of Physics Conference Series No. 784, p. 42Google Scholar
Lazarian, A. & Vishniac, E. T. 1999, ApJ, 517, 700CrossRefGoogle Scholar
Leão, M. R. M., Santos-Lima, R., de Gouveia Dal Pino, E. M., Lazarian, A. 2011, in prep.Google Scholar
McKee, C. F. & Ostriker, E. C. 2007, ARAA, 45, 565CrossRefGoogle Scholar
Melioli, C., & de Gouveia Dal Pino, E. M. 2004, A&A, 424, 817Google Scholar
Melioli, C., de Gouveia dal Pino, E. M., & Raga, A. 2005, A&A, 443, 495Google Scholar
Melioli, C., Brighenti, F., D'Ercole, A., & de Gouveia Dal Pino, E. M. 2008, MNRAS, 388, 573CrossRefGoogle Scholar
Melioli, C., Brighenti, F., D'Ercole, A., & de Gouveia Dal Pino, E. M. 2009, MNRAS, 399, 1089CrossRefGoogle Scholar
Mestel, L., & Spitzer, L. Jr. 1956, MNRAS, 116, 503CrossRefGoogle Scholar
Santos-Lima, R., Lazarian, A., de Gouveia Dal Pino, E. M., & Cho, J. 2010, ApJ, 714, 442CrossRefGoogle Scholar
Santos-Lima, R., de Gouveia Dal Pino, A., Lazarian, E. M. 2011, in prep.Google Scholar
Shu, F. H. 1983, ApJ, 273, 202CrossRefGoogle Scholar
Shu, F. H., Galli, D., Lizano, S., & Cai, M. 2006, ApJ, 647, 382CrossRefGoogle Scholar
Strickland, D. K., & Stevens, I. R. 2000, MNRAS, 314, 511CrossRefGoogle Scholar
Tassis, K. & Mouschovias, T. C. 2005, ApJ, 618, 769CrossRefGoogle Scholar
Tenorio-Tagle, G., Silich, S., & Muñoz-Tuñón, C. 2003, ApJ, 597, 279CrossRefGoogle Scholar