Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T16:19:33.687Z Has data issue: false hasContentIssue false

MHD simulations of jet formation - protostellar jets & applications to AGN jets

Published online by Cambridge University Press:  24 February 2011

Christian Fendt
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany email: [email protected]
Bhargav Vaidya
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany email: [email protected]
Oliver Porth
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany email: [email protected]
Somayeh Sheikh Nezami
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Jet formation MHD simulations are presented considering a variety of model setups. The first approach investigates the interrelation between the disk magnetisation profile and jet collimation. Our results suggest (and quantify) that outflows launched from a very concentrated region at the inner disk tend to be weakly collimated. In the second approach, jet formation is investigated from a magnetic field configuration consisting of a stellar dipole superposed by a strong disk field. We find that the central dipole considerably de-collimates the disk wind. In addition, reconnection flares are launched in the interaction region of disk and stellar magnetic field, subsequently changing the outflow mass flux by factors of two. The time interval between flare ejection is about 1000 Keplerian periods - surprisingly similar to the observed time lag between jet knots. The third approach considers radiative pressure effects on jet collimation - an environment which is interesting mainly for outflows from massive young stars (but also for relativistic jets). Finally we present relativistic MHD simulations of jet formation from accretion disks extenting the previous non-relativistic approaches.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Abbott, D. C. 1982, ApJ 259, 282CrossRefGoogle Scholar
Blandford, R. D. & Payne, D. G. 1982, MNRAS 199, 883CrossRefGoogle Scholar
Casse, F. & Keppens, R. 2002, ApJ 581, 988CrossRefGoogle Scholar
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ 195, 157CrossRefGoogle Scholar
Fendt, Ch. & Zinnecker, H. 1998, A&A 334, 750Google Scholar
Fendt, Ch. & Čemeljić, M. 2002, A&A 395, 1045Google Scholar
Fendt, Ch. 2006, ApJ 651, 272CrossRefGoogle Scholar
Fendt, Ch. 2009, ApJ 692, 346CrossRefGoogle Scholar
Gayley, K. G. 1995, ApJ 454, 410CrossRefGoogle Scholar
Goodson, A. P., Winglee, R. M. & Böhm, K-.H. 1997, ApJ 489, 199CrossRefGoogle Scholar
Goodson, A. P., Bohm, K.-H., & Winglee, R. M. 1999, ApJ 524, 142CrossRefGoogle Scholar
Hayashi, M. R., Shibata, K., & Matsumoto, R. 1996, ApJ 468, L37CrossRefGoogle Scholar
Hirose, S., Uchida, Y., Shibata, K., & Matsumoto, R. 1997, PASJ 49, 193CrossRefGoogle Scholar
Krasnopolsky, R., Li, Z.-Y., & Blandford, R. D. 1999, ApJ 526, 631CrossRefGoogle Scholar
Meliani, Z., Casse, F., & Sauty, C. 2007, A&A 460, 1Google Scholar
Michel, F. C. 1969, ApJ 158, 727CrossRefGoogle Scholar
Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., & Ferrari, A. 2007, ApJS 170, 228CrossRefGoogle Scholar
Miller, K. A. & Stone, J. M. 1997, ApJ 489, 890CrossRefGoogle Scholar
Ouyed, R. & Pudritz, R. E. 1997, ApJ 482, 712CrossRefGoogle Scholar
Porth, O. & Fendt, C. 2010, ApJ, 709, 1100CrossRefGoogle Scholar
Proga, D. 2003, ApJ, 585, 406CrossRefGoogle Scholar
Pudritz, R. E. & Norman, C. A. 1983, ApJ 274, 677CrossRefGoogle Scholar
Pudritz, R. E., Ouyed, R., Fendt, Ch., & Brandenburg, A. 2007, in: Reipurth, B., Jewitt, D., & Keil, K. (eds.), Protostars & Planets V, University of Arizona Press, Tucson, 2007, p. 277Google Scholar
von Rekowski, B. & Brandenburg, A. 2004, A&A 420, 17Google Scholar
Romanova, M., Ustyugova, G., Koldoba, A., & Lovelace, R. 2002, ApJ 578, 420CrossRefGoogle Scholar
Stone, J. M. & Norman, M. L. 1992, ApJS 80, 753CrossRefGoogle Scholar
Shang, H., Li, Z.-Y., & Hirano, N. 2007, in: Reipurth, B., Jewitt, D., & Keil, K. (eds.), Protostars & Planets V, University of Arizona Press, Tucson, 2007, p. 261Google Scholar
Uchida, Y. & Low, B. C. 1981, Journal of Astroph. and Astron. 2, 405CrossRefGoogle Scholar
Uchida, Y. & Shibata, K. 1984, PASJ 36, 105Google Scholar
Uchida, Y. & Shibata, K. 1985, PASJ 37, 515Google Scholar
Ustyugova, G., Koldoba, A., Romanova, M., Chechetkin, V., & Lovelace, R. 1995, ApJ 439, 39CrossRefGoogle Scholar
Vaidya, B., Fendt, C., & Beuther, H. 2009, ApJ 702, 567CrossRefGoogle Scholar
Zanni, C., Ferrari, A., Rosner, R., Bodo, G., & Massaglia, S. 2007, A&A 469, 811Google Scholar