Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T02:29:17.613Z Has data issue: false hasContentIssue false

Methanol formation in TW Hya and future prospects for detecting larger complex molecules in disks with ALMA

Published online by Cambridge University Press:  04 September 2018

Catherine Walsh
Affiliation:
School of Physics and Astronomy University of Leeds, Leeds LS2 9JT, UK email: [email protected] Leiden Observatory Leiden University, P.O. Box 9513, Leiden 2300 RA, Netherlands
Shreyas Vissapragada
Affiliation:
Leiden Observatory Leiden University, P.O. Box 9513, Leiden 2300 RA, Netherlands Columbia Astrophysics Laboratory Columbia University, New York, NY 10027, USA
Harry McGee
Affiliation:
School of Physics and Astronomy University of Leeds, Leeds LS2 9JT, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gas-phase methanol was recently detected in a protoplanetary disk for the first time with ALMA. The peak abundance and distribution of methanol observed in TW Hya differed from that predicted by chemical models. Here, the chemistry of methanol gas and ice is calculated using a physical model tailored for TW Hya with the aim to contrast the results with the recent detection in this source. New pathways for the formation of larger complex molecules (e.g., ethylene glycol) are included in an updated chemical model, as well as the fragmentation of methanol ice upon photodesorption. It is found that including fragmentation upon photodesorption improves the agreement between the peak abundance reached in the chemical models with that observed in TW Hya (∼10−11 with respect to H2); however, the model predicts that the peak in emission resides a factor of 2 − 3 farther out in the disk than the ALMA images. Reasons for the persistent differences in the gas-phase methanol distribution between models and the observations of TW Hya are discussed. These include the location of the ice reservoir which may coincide with the compact mm-dust disk (≲ 60 au) and sources of gas-phase methanol which have not yet been considered in models. The possibility of detecting larger molecules with ALMA is also explored. Calculations of the rotational spectra of complex molecules other than methanol using a parametric model constrained by the TW Hya observations suggest that the detection of individual emission lines of complex molecules with ALMA remains challenging. However, the signal-to-noise ratio can be enhanced via stacking of multiple transitions which have similar upper energy levels.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Andrews, S. M., Wilner, D. J., Zhu, Z., et al., 2016, ApJL, 820, L40Google Scholar
Bergin, E. A., Du, F., Cleeves, L. I., et al., 2016, ApJ, 831, 101Google Scholar
Bertin, M., Romanzin, C., Doronin, M., et al., 2016, ApJL, 817, L12Google Scholar
Boogert, A. C. A., Gerakines, P. A., & Whittet, D. C. B., 2015, ARA&A, 53, 541Google Scholar
Caselli, P. & Ceccarelli, C., 2012, A&ARv, 20, 56Google Scholar
Chen, Y.-J., Ciaravella, A., Muñoz Caro, G. M., et al., 2013, ApJ, 778, 162Google Scholar
Chuang, K.-J., Fedoseev, G., Ioppolo, S., van Dishoeck, E. F., & Linnartz, H., 2016, MNRAS, 455, 1702Google Scholar
Cruz-Diaz, G. A., Martín-Doménech, R., Muñoz Caro, G. M., & Chen, Y.-J., 2016, A&A, 592, A68Google Scholar
Drozdovskaya, M., Walsh, C., Visser, R., Harsono, D., & van Dishoeck, E. F., 2014, MNRAS, 445, 913Google Scholar
Drozdovskaya, M., Walsh, C., van Dishoeck, E. F., et al., 2016, MNRAS, 462, 977Google Scholar
Du, F., Bergin, E. A., Hogerheijde, M. R., et al., 2017, ApJ, 842, 98Google Scholar
Furuya, K. & Aikawa, Y., 2014, ApJ, 790, 97Google Scholar
Herbst, E. & van Dishoeck, E. F., 2009, ARA&A, 47, 427Google Scholar
Hogerheidje, M. R., Bergin, E. A., Brinch, C., et al., 2011, Science, 334, 338Google Scholar
Kama, M., Bruderer, S., van Dishoeck, E. F., et al., 2016, A&A, 592, A83Google Scholar
Le Roy, L., Altwegg, K., Balsiger, H., et al., 2015, A&A, 583, A1Google Scholar
Ligterink, N., Walsh, C., Bhuin, R. G., et al. 2017, A&A, to be submittedGoogle Scholar
Loomis, R. A., Öberg, K. I., Andrews, S. M., et al., 2017, ApJ, submittedGoogle Scholar
Modica, P. & Palumbo, M. E., 2010, A&A, 519, A22Google Scholar
Mumma, M. J. & Charnley, S. B., 2011, ARA&A, 49, 471Google Scholar
Nomura, H., Aikawa, Y., Tsujimoto, M., Nakagawa, Y., & Millar, T. J., 2007, ApJ, 661, 334Google Scholar
Nomura, H., Tsukagoshi, T., Kawabe, R., et al., 2016, ApJL, 819, L7Google Scholar
Öberg, K. I., Garrod, R. T., van Dishoeck, E. F., & Linnartz, H., 2009, A&A, 504, 891Google Scholar
Öberg, K. I., Guzmán, V. V., Furuya, K., et al., 2015, Nature, 520, 198Google Scholar
Öberg, K. I., Guzmán, V. V., Merchantz, C. J., et al., 2017, ApJ, 839, 43Google Scholar
Parfenov, S. Yu., Semenov, D. A., Sobolev, A. M., & Gray, M. D., 2016, MNRAS, 460, 2648Google Scholar
Parfenov, S. Yu., Semenov, D. A., Henning, Th., et al., 2017, MNRAS, 468, 2024Google Scholar
Salinas, V. N., Hogerheijde, M. R., Bergin, E. A., et al., 2016, A&A, 591, A122Google Scholar
Semenov, D. & Wiebe, D., 2011, ApJS, 196, 25Google Scholar
Walsh, C., Millar, T. J., Nomura, H., et al., 2014, A&A, 563, A33Google Scholar
Walsh, C., Nomura, H., & van Dishoeck, E. F., 2015, A&A, 582, A88Google Scholar
Walsh, C., Loomis, R. A., Öberg, K. I., et al., 2016, ApJL, 823, L10Google Scholar
Weidenschilling, S. J., 1977, MNRAS, 180, 57Google Scholar
Yoneda, H., Tsukamoto, Y., Furuya, K., & Aikawa, Y., 2016, ApJ, 833, 105Google Scholar