Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T19:35:02.404Z Has data issue: false hasContentIssue false

METAPHOR: Probability density estimation for machine learning based photometric redshifts

Published online by Cambridge University Press:  30 May 2017

V. Amaro
Affiliation:
Dept. of Physical Sciences, University of Napoli Federico II, via Cinthia 9, 80126 Napoli, Italy
S. Cavuoti
Affiliation:
INAF - Astronomical Observatory of Capodimonte, via Moiariello 16, 80131 Napoli, Italy
M. Brescia
Affiliation:
INAF - Astronomical Observatory of Capodimonte, via Moiariello 16, 80131 Napoli, Italy
C. Vellucci
Affiliation:
DIETI, University of Naples Federico II, Via Claudio, 21 I-80125 Napoli, Italy
C. Tortora
Affiliation:
Kapteyn Astronomical Institute, Univ. of Groningen, 9700 AV Groningen, the Netherlands
G. Longo
Affiliation:
Dept. of Physical Sciences, University of Napoli Federico II, via Cinthia 9, 80126 Napoli, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z’s and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF’s derived from a traditional SED template fitting method (Le Phare).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bonnet, C., 2013, MNRAS, 449, 1, 10431056 Google Scholar
Breiman, L., 2001, Machine Learning, Springer Eds., 45, 1, 2532 Google Scholar
Brescia, M., Cavuoti, S., Longo, G., et al., 2014a, PASP, 126, 942, 783797 Google Scholar
Brescia, M., Cavuoti, S., Longo, G., & De Stefano, V., 2014c, VizieR On-line Data Catalog: J/A+A/568/A126Google Scholar
Brescia, M., Cavuoti, S., D’Abrusco, R., Mercurio, A., & Longo, G., 2013, ApJ, 772, 140 Google Scholar
Byrd, R. H., Nocedal, J., & Schnabel, R. B., Mathematical Programming, 63, 129 (1994)CrossRefGoogle Scholar
Carrasco, K. & Brunner, R. J., 2014, MNRAS, 442, 4, 33803399 Google Scholar
Cavuoti, S., Brescia, M., Longo, G., & Mercurio, A., 2012, A&A, 546, 13 Google Scholar
Cavuoti, S., Brescia, M., D’Abrusco, R., Longo, G. & Paolillo, M., 2014a, MNRAS, 437, 968 Google Scholar
Cavuoti, S., Brescia, M., & Longo, G., 2014b, Proceedings of the IAU Symposium, Vol. 306, Cambridge University PressGoogle Scholar
Cavuoti, S., Brescia, M., De Stefano, V., & Longo, G., 2015b, Experimental Astronomy, Springer, Vol. 39, Issue 1, 4571 Google Scholar
Cover, T. M. & Hart, P. E., 1967, IEEE Transactions on Information Theory 13 (1) Google Scholar
Ilbert, O., Arnouts, S., McCracken, H. J., et al., 2006, A&A, 457, 841 Google Scholar
Rau, M. M., Seitz, S., Brimioulle, F., et al., 2015, MNRAS, 452, 4, 37103725 Google Scholar
Sadeh, I., Abdalla, F. B., & Lahav, O., 2015, eprint arXiv:1507.00490Google Scholar
York, D. G., Adelman, J., Anderson, J. E., et al., 2000, AJ, 120, 1579 Google Scholar