Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T23:30:35.288Z Has data issue: false hasContentIssue false

Metal production in the early Universe: what chemical abundances in old stellar populations in the Milky Way tell us

Published online by Cambridge University Press:  13 February 2024

Miho N. Ishigaki*
Affiliation:
National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Old stellar populations in our Galaxy provide fossil records of the metal enrichment in the first few billion years of the cosmic history. Growing elemental abundance data of individual stars combined with stellar ages and kinematics allow us to make constraints on characteristic properties of the metal-enrichment sources in the early Universe, such as the first stars. In order to interpret observed chemical abundances in the oldest stellar populations in terms of metal-enrichment sources, stellar and supernova yield models are crucial. In this article, we review how we can interpret observed chemical abundances in old stars in terms of the nature of metal enrichment sources. We discuss the limitations and the prospects of empirically constraining supernova yield models based on a large sample of extremely metal-poor stars. At the same time, we emphasize the importance of hunting old stars beyond the Solar neighborhood, which can be achieved with the next-generation multi-object spectrographs at large telescopes.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93 CrossRefGoogle Scholar
Abohalima, A., & Frebel, A. 2018, ApJS, 238, 36 CrossRefGoogle Scholar
Aoki, W., Matsuno, T., Honda, S., et al. 2018, PASJ, 70, 94 CrossRefGoogle Scholar
Aoki, W., Li, H., Matsuno, T., et al. 2022, ApJ, 931, 146 CrossRefGoogle Scholar
Audouze, J., & Silk, J. 1995, ApJ, 451L, 49 CrossRefGoogle Scholar
Barbuy, B., Chiappini, C., Gerhard, O. 2018, ARA&A, 56, 223 CrossRefGoogle Scholar
Beers, T. C., & Christlieb, N. 2005, ARA&A, 43, 531 CrossRefGoogle Scholar
Bessell, M. S., Collet, R., Keller, S. C., et al. 2015, ApJ, 806, 16 CrossRefGoogle Scholar
Bromm, V., & Larson, R. B. 2004, ARA&A, 42, 79 CrossRefGoogle Scholar
Bromm, V., & Yoshida, N. 2011, ARA&A, 49, 373 Google Scholar
Buder, S. et al. 2021, MNRAS, 506, 150 Google Scholar
Chen, K.-J., Heger, A., Whalen, D. J., et al. 2017, MNRAS, 467, 4731 CrossRefGoogle Scholar
Chiaki, G., & Wise, J. H. 2019, MNRAS, 482, 3933 CrossRefGoogle Scholar
Choplin, A., Tominaga, N., & Ishigaki, M. N. 2019, A&A, 632, A62 CrossRefGoogle Scholar
Cooke, R., Pettini, M., Steidel, C. C., Rudie, G. C., & Nissen, P. E. 2011, MNRAS, 417, 1534 CrossRefGoogle Scholar
Fernández-Alvar, E., Carigi, L., Allende Prieto, C., et al. 2017, MNRAS, 465, 1586 CrossRefGoogle Scholar
Frebel, A., & Norris, J. E. 2015, ARA&A, 53, 631 CrossRefGoogle Scholar
Grimmett, J. J., Müller, B., Heger, A., Banerjee, P. ,& Obergaulinger, M. 2021, MNRAS, 501, 2764 CrossRefGoogle Scholar
Hartwig, T., Ishigaki, M. N., Klessen, R. S., & Yoshida, N. 2018, MNRAS, 482, 1204 Google Scholar
Hartwig, T., Ishgiaki, M. I., Kobayashi, C., Tominaga, N. 2023, ApJ in pressGoogle Scholar
Heger, A., & Woosley, S. E. 2002, ApJ, 567, 532 CrossRefGoogle Scholar
Heger, A., & Woosley, S. E. 2010, ApJ, 724, 341 CrossRefGoogle Scholar
Hirano, S., Hosokawa, T., Yoshida, N., et al. 2014, ApJ, 781, 60 CrossRefGoogle Scholar
Ishigaki, M. N., Tominaga, N., Kobayashi, C., & Nomoto, K. 2018, ApJ, 857, 46 CrossRefGoogle Scholar
Ishigaki, M. N., Hartwig, T., Tarumi, Y., et al. 2021, MNRAS, 506, 5410 CrossRefGoogle Scholar
Iwamoto, N., Umeda, H., Tominaga, N., Nomoto, K., & Maeda, K. 2005, Science, 309, 451 CrossRefGoogle Scholar
Jeon, M., Pawlik, A. H., Bromm, V., & Milosavljević, M. 2014, MNRAS, 444, 3288CrossRefGoogle Scholar
Joggerst, C. C., Almgren, A., & Woosley, S. E. 2010, ApJ, 723, 353 CrossRefGoogle Scholar
Karlsson, T., Bromm, V., & Bland-Hawthorn, J. 2013, RvMP, 85, 809 CrossRefGoogle Scholar
Keller, S. C., Bessell, M. S., Frebel, A., et al. 2014, Nature, 506, 463 CrossRefGoogle Scholar
Klessen, R. S., Glover, S. C. O. 2023, arXiv:2303.12500Google Scholar
Leung, S.-C., & Nomoto, K. 2018, ApJ, 861, 143 CrossRefGoogle Scholar
Leung, S.-C., & Nomoto, K. 2020, ApJ, 888, 80 CrossRefGoogle Scholar
Li, H., Aoki, W., Matsuno, T., et al. 2022, ApJ, 931, 147 Google Scholar
Limongi, M., & Chieffi, A. 2012, ApJS, 199, 38 CrossRefGoogle Scholar
Lindegren, L. et al. 2020, A&A, 649, 35 Google Scholar
Maeder, A., & Meynet, G. 2012, RvMP, 84, 25 CrossRefGoogle Scholar
Magg, M., Nordlander, T., Glover, S. C. O., et al. 2020, MNRAS, 498, 3703 CrossRefGoogle Scholar
Naidu, R. P., Conroy, C., Bonaca, A., et al. 2020, ApJ, 901, 48 Google Scholar
Nomoto, K., Kobayashi, C., Tominaga, N. 2013, ARA&A, 51, 457 CrossRefGoogle Scholar
Norris, J. E., & Yong, D. 2019, ApJ, 879, 37 CrossRefGoogle Scholar
Onoue, M., Bañados, E., Mazzucchelli, C. et al. 2020, ApJ, 898, 105 CrossRefGoogle Scholar
Placco, V. M., Frebel, A., Beers, T. C., & Stancliffe, R. J. 2014, ApJ, 797, 21 CrossRefGoogle Scholar
Ritter, J. S., Safranek-Shrader, C., Gnat, O., Milosavljević, M., & Bromm, V. 2012, ApJ, 761, 56CrossRefGoogle Scholar
Ritter, J. S., Sluder, A., Safranek-Shrader, C., Milosavljević, M., & Bromm, V. 2015, MNRAS, 451, 1190CrossRefGoogle Scholar
Sharma, S. et al. 2018, MNRAS, 473, 2004 Google Scholar
Soderblom, D. R. 2010, ARA&A, 48, 581 Google Scholar
Suda, T., Katsuta, Y., Yamada, S., et al. 2008, PASJ, 60, 1159 CrossRefGoogle Scholar
Takada, M., et al. 2014, PASJ, 66, R1 Google Scholar
Tominaga, N., Umeda, H., Nomoto, K. 2007, ApJ, 660, 516 CrossRefGoogle Scholar
Tominaga, N. 2009, ApJ, 690, 526 CrossRefGoogle Scholar
Tominaga, N., Iwamoto, N., & Nomoto, K. 2014, ApJ, 785, 98 CrossRefGoogle Scholar
Toyouchi, D., Inayoshi, K., Ishigaki, M. N., & Tominaga, N. 2022, MNRAS, 512, 2573 CrossRefGoogle Scholar
Toyouchi, D., Inayoshi, K., Li, W., Haiman, Z., & Kuiper, R. 2023, MNRAS, 518, 1601 CrossRefGoogle Scholar
Umeda, H., & Nomoto, K. 2002, ApJ, 565, 385 Google Scholar
Umeda, H., & Nomoto, K. 2005, ApJ, 619, 427 CrossRefGoogle Scholar
Whalen, D., van Veelen, B., O’Shea, B. W., & Norman, M. L. 2008, ApJ, 682, 49 CrossRefGoogle Scholar
Wells, A. I., & Norman, M. L. 2022, ApJ, 932, 71 CrossRefGoogle Scholar
Yoon, S. C., Dierks, A., Langer, N. 2012, A&A, 542, A113 Google Scholar
Yoshii, Y., Sameshima, H., Tsujimoto, T. 2022, ApJ, 937, 61 CrossRefGoogle Scholar